001     1007030
005     20240712112832.0
024 7 _ |a 10.1039/D3CP00378G
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01949
|2 datacite_doi
024 7 _ |a 37128728
|2 pmid
024 7 _ |a WOS:000980069900001
|2 WOS
037 _ _ |a FZJ-2023-01949
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Daniel, Davis Thomas
|0 P:(DE-Juel1)185897
|b 0
|e Corresponding author
245 _ _ |a Laplace inverted pulsed EPR relaxation to study contact between active material and carbon black in Li-organic battery cathodes
260 _ _ |a Cambridge
|c 2023
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688385655_3072
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The addition of conductive additives during electrode fabrication is standard practice to mitigate a low intrinsic electronic conductivity of most cathode materials used in Li-ion batteries. To ensure an optimal conduction pathway, these conductive additives, which generally consist of carbon particles,need to be in good contact with the active compounds. Herein, we demonstrate how a combination of pulsed electron paramagnetic resonance (EPR) relaxometry and inverse Laplace transform(ILT) can be used to study such contact. The investigated system consists of PTMA (poly(2,2,6,6–tetramethylpiperidinyloxy–4–ylmethacrylate)) monomer radicals, which is a commonly used redox unit in organic radical batteries (ORB), mixed at different ratios with Super P carbon black (CB) as the conductive additive. Inversion recovery data were acquired to determine longitudinal (T1)relaxation time constant distributions. It was observed that not only the position and relative amplitude, but also the number of relaxation modes varies as the composition of PTMA monomer and CB is changed, thereby justifying the use of ILT instead of fitting with a predetermined number of components. A hypothesis for the origin of different relaxation modes was devised. It suggests that the electrode composition may locally affect the quality of electronic contact between the active material and carbon black
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project 441255373 - Einblicke in die Dotierungsmechanismen von Polymerelektrolyt / redoxaktiven organischen Radikal Polymer lamellaren Verbundwerkstoffen (441255373)
|0 G:(GEPRIS)441255373
|c 441255373
|x 1
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Szczuka, Conrad
|0 P:(DE-Juel1)179011
|b 1
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 2
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 4
|u fzj
773 _ _ |a 10.1039/D3CP00378G
|g p. 10.1039.D3CP00378G
|0 PERI:(DE-600)1476244-4
|n 18
|p 12767-12776
|t Physical chemistry, chemical physics
|v 25
|y 2023
|x 1463-9076
856 4 _ |u https://juser.fz-juelich.de/record/1007030/files/d3cp00378g.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007030
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185897
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)185897
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179011
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: Royal Society of Chemistry 2021
|0 PC:(DE-HGF)0110
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21