001007045 001__ 1007045
001007045 005__ 20230929112527.0
001007045 0247_ $$2doi$$a10.1021/acs.jctc.2c01090
001007045 0247_ $$2ISSN$$a1549-9618
001007045 0247_ $$2ISSN$$a1549-9626
001007045 0247_ $$2Handle$$a2128/34359
001007045 0247_ $$2pmid$$a37023001
001007045 0247_ $$2WOS$$aWOS:000973179200001
001007045 037__ $$aFZJ-2023-01951
001007045 082__ $$a610
001007045 1001_ $$00000-0003-2377-2268$$aDittrich, Jonas$$b0
001007045 245__ $$aResolution of Maximum Entropy Method-Derived Posterior Conformational Ensembles of a Flexible System Probed by FRET and Molecular Dynamics Simulations
001007045 260__ $$aWashington, DC$$c2023
001007045 3367_ $$2DRIVER$$aarticle
001007045 3367_ $$2DataCite$$aOutput Types/Journal article
001007045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683090696_28011
001007045 3367_ $$2BibTeX$$aARTICLE
001007045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007045 3367_ $$00$$2EndNote$$aJournal Article
001007045 520__ $$aMaximum entropy methods (MEMs) determine posterior distributions by combining experimental data with prior information. MEMs are frequently used to reconstruct conformational ensembles of molecular systems for experimental information and initial molecular ensembles. We performed time-resolved Förster resonance energy transfer (FRET) experiments to probe the interdye distance distributions of the lipase-specific foldase Lif in the apo state, which likely has highly flexible, disordered, and/or ordered structural elements. Distance distributions estimated from ensembles of molecular dynamics (MD) simulations serve as prior information, and FRET experiments, analyzed within a Bayesian framework to recover distance distributions, are used for optimization. We tested priors obtained by MD with different force fields (FFs) tailored to ordered (FF99SB, FF14SB, and FF19SB) and disordered proteins (IDPSFF and FF99SBdisp). We obtained five substantially different posterior ensembles. As in our FRET experiments the noise is characterized by photon counting statistics, for a validated dye model, MEM can quantify consistencies between experiment and prior or posterior ensembles. However, posterior populations of conformations are uncorrelated to structural similarities for individual structures selected from different prior ensembles. Therefore, we assessed MEM simulating varying priors in synthetic experiments with known target ensembles. We found that (i) the prior and experimental information must be carefully balanced for optimal posterior ensembles to minimize perturbations of populations by overfitting and (ii) only ensemble-integrated quantities like inter-residue distance distributions or density maps can be reliably obtained but not ensembles of atomistic structures. This is because MEM optimizes ensembles but not individual structures. This result for a highly flexible system suggests that structurally varying priors calculated from varying prior ensembles, e.g., generated with different FFs, may serve as an ad hoc estimate for MEM reconstruction robustness.
001007045 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001007045 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001007045 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x2
001007045 536__ $$0G:(DE-Juel1)hdd16_20171101$$aAnalysis of the conformational changes during activation of lipase A by its foldase (hdd16_20171101)$$chdd16_20171101$$fAnalysis of the conformational changes during activation of lipase A by its foldase$$x3
001007045 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007045 7001_ $$00000-0003-2626-6096$$aPopara, Milana$$b1
001007045 7001_ $$0P:(DE-HGF)0$$aKubiak, Jakub$$b2
001007045 7001_ $$0P:(DE-HGF)0$$aDimura, Mykola$$b3
001007045 7001_ $$0P:(DE-HGF)0$$aSchepers, Bastian$$b4
001007045 7001_ $$0P:(DE-HGF)0$$aVerma, Neha$$b5
001007045 7001_ $$0P:(DE-HGF)0$$aSchmitz, Birte$$b6
001007045 7001_ $$0P:(DE-Juel1)162232$$aDollinger, Peter$$b7
001007045 7001_ $$0P:(DE-Juel1)131480$$aKovacic, Filip$$b8$$ufzj
001007045 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b9$$eCorresponding author$$ufzj
001007045 7001_ $$0P:(DE-HGF)0$$aSeidel, Claus A. M.$$b10$$eCorresponding author
001007045 7001_ $$0P:(DE-HGF)0$$aPeulen, Thomas-Otavio$$b11$$eCorresponding author
001007045 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b12$$eCorresponding author
001007045 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.2c01090$$gVol. 19, no. 8, p. 2389 - 2409$$n8$$p2389 - 2409$$tJournal of chemical theory and computation$$v19$$x1549-9618$$y2023
001007045 8564_ $$uhttps://juser.fz-juelich.de/record/1007045/files/acs.jctc.2c01090.pdf
001007045 8564_ $$uhttps://juser.fz-juelich.de/record/1007045/files/MS_Lif_MEM_final_revised2.pdf$$yPublished on 2023-04-06. Available in OpenAccess from 2024-04-06.
001007045 909CO $$ooai:juser.fz-juelich.de:1007045$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131480$$aForschungszentrum Jülich$$b8$$kFZJ
001007045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b9$$kFZJ
001007045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b12$$kFZJ
001007045 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001007045 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001007045 9141_ $$y2023
001007045 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001007045 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001007045 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001007045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2023-08-20
001007045 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2023-08-20
001007045 920__ $$lyes
001007045 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
001007045 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
001007045 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
001007045 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x3
001007045 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x4
001007045 980__ $$ajournal
001007045 980__ $$aVDB
001007045 980__ $$aUNRESTRICTED
001007045 980__ $$aI:(DE-Juel1)IBG-4-20200403
001007045 980__ $$aI:(DE-Juel1)NIC-20090406
001007045 980__ $$aI:(DE-Juel1)JSC-20090406
001007045 980__ $$aI:(DE-Juel1)IBG-1-20101118
001007045 980__ $$aI:(DE-Juel1)IMET-20090612
001007045 9801_ $$aFullTexts