001     1007045
005     20230929112527.0
024 7 _ |a 10.1021/acs.jctc.2c01090
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 2128/34359
|2 Handle
024 7 _ |a 37023001
|2 pmid
024 7 _ |a WOS:000973179200001
|2 WOS
037 _ _ |a FZJ-2023-01951
082 _ _ |a 610
100 1 _ |a Dittrich, Jonas
|0 0000-0003-2377-2268
|b 0
245 _ _ |a Resolution of Maximum Entropy Method-Derived Posterior Conformational Ensembles of a Flexible System Probed by FRET and Molecular Dynamics Simulations
260 _ _ |a Washington, DC
|c 2023
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683090696_28011
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Maximum entropy methods (MEMs) determine posterior distributions by combining experimental data with prior information. MEMs are frequently used to reconstruct conformational ensembles of molecular systems for experimental information and initial molecular ensembles. We performed time-resolved Förster resonance energy transfer (FRET) experiments to probe the interdye distance distributions of the lipase-specific foldase Lif in the apo state, which likely has highly flexible, disordered, and/or ordered structural elements. Distance distributions estimated from ensembles of molecular dynamics (MD) simulations serve as prior information, and FRET experiments, analyzed within a Bayesian framework to recover distance distributions, are used for optimization. We tested priors obtained by MD with different force fields (FFs) tailored to ordered (FF99SB, FF14SB, and FF19SB) and disordered proteins (IDPSFF and FF99SBdisp). We obtained five substantially different posterior ensembles. As in our FRET experiments the noise is characterized by photon counting statistics, for a validated dye model, MEM can quantify consistencies between experiment and prior or posterior ensembles. However, posterior populations of conformations are uncorrelated to structural similarities for individual structures selected from different prior ensembles. Therefore, we assessed MEM simulating varying priors in synthetic experiments with known target ensembles. We found that (i) the prior and experimental information must be carefully balanced for optimal posterior ensembles to minimize perturbations of populations by overfitting and (ii) only ensemble-integrated quantities like inter-residue distance distributions or density maps can be reliably obtained but not ensembles of atomistic structures. This is because MEM optimizes ensembles but not individual structures. This result for a highly flexible system suggests that structurally varying priors calculated from varying prior ensembles, e.g., generated with different FFs, may serve as an ad hoc estimate for MEM reconstruction robustness.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 2
536 _ _ |a Analysis of the conformational changes during activation of lipase A by its foldase (hdd16_20171101)
|0 G:(DE-Juel1)hdd16_20171101
|c hdd16_20171101
|f Analysis of the conformational changes during activation of lipase A by its foldase
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Popara, Milana
|0 0000-0003-2626-6096
|b 1
700 1 _ |a Kubiak, Jakub
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dimura, Mykola
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schepers, Bastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Verma, Neha
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schmitz, Birte
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dollinger, Peter
|0 P:(DE-Juel1)162232
|b 7
700 1 _ |a Kovacic, Filip
|0 P:(DE-Juel1)131480
|b 8
|u fzj
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 9
|e Corresponding author
|u fzj
700 1 _ |a Seidel, Claus A. M.
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Peulen, Thomas-Otavio
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.2c01090
|g Vol. 19, no. 8, p. 2389 - 2409
|0 PERI:(DE-600)2166976-4
|n 8
|p 2389 - 2409
|t Journal of chemical theory and computation
|v 19
|y 2023
|x 1549-9618
856 4 _ |u https://juser.fz-juelich.de/record/1007045/files/acs.jctc.2c01090.pdf
856 4 _ |y Published on 2023-04-06. Available in OpenAccess from 2024-04-06.
|u https://juser.fz-juelich.de/record/1007045/files/MS_Lif_MEM_final_revised2.pdf
909 C O |o oai:juser.fz-juelich.de:1007045
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131480
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2023-08-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2023-08-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 3
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21