001     1007047
005     20231208201858.0
024 7 _ |a 10.1175/AIES-D-22-0085.1
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01952
|2 datacite_doi
037 _ _ |a FZJ-2023-01952
100 1 _ |a Leufen, Lukas Hubert
|0 P:(DE-Juel1)177004
|b 0
|e Corresponding author
|u fzj
245 _ _ |a O3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments
260 _ _ |a Boston
|c 2023
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702014408_21791
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the impact of tropospheric ozone pollution on humankind, there is a compelling need for robust air quality forecasts. Here, we introduce a novel deep learning (DL) forecasting system called O3ResNet that produces a four-day forecast for ground-level ozone. O3ResNet is based on a convolutional neural network with residual blocks. The model has been trained on 22 years of ozone and nitrogen oxides in-situ measurements and ERA5 reanalysis data from 2000 to 2021 at 328 stations in Central Europe located in rural and suburban environment. Our model outperforms the state-of-the-art Copernicus Atmosphere Monitoring Service regional forecast model ensemble for ground-level ozone with respect to the mean square error and mean absolute error of the daily maximum 8-hour running average ozone, thus marking a major milestone for DL-based ozone prediction. O3ResNet has a very small bias without requiring additional post-processing, and it generalizes well so that new stations can be added with no need to re-train the neural network. As the model works on hourly data, it can be easily adapted to output other air quality metrics. We conclude that O3ResNet is sufficiently advanced and robust to become a test application for operational air quality forecasting with DL.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kleinert, Felix
|0 P:(DE-Juel1)176602
|b 1
|u fzj
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 2
|u fzj
773 _ _ |a 10.1175/AIES-D-22-0085.1
|g p. 1 - 42
|0 PERI:(DE-600)3172988-5
|n 3
|p 1 - 16
|t Artificial Intelligence for the Earth Systems
|v 2
|y 2023
|x 2769-7525
856 4 _ |u https://juser.fz-juelich.de/record/1007047/files/Invoice_INV002339.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1007047/files/aies-AIES-D-22-0085.1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1007047/files/aies-AIES-D-22-0085.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1007047/files/aies-AIES-D-22-0085.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1007047/files/aies-AIES-D-22-0085.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1007047/files/aies-AIES-D-22-0085.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1007047
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177004
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176602
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21