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ABSTRACT: With the impact of tropospheric ozone pollution on humankind, there is a compelling need for robust air
quality forecasts. Here, we introduce a novel deep learning (DL) forecasting system called O3ResNet that produces a
4-day forecast for ground-level ozone. O3ResNet is based on a convolutional neural network with residual blocks. The model
has been trained on 22 yr of ozone and nitrogen oxides in situ measurements and ERA5 reanalysis data from 2000 to 2021
at 328 stations in central Europe located in rural and suburban environments. Our model outperforms the state-of-the-art
Copernicus Atmosphere Monitoring Service regional forecast model ensemble for ground-level ozone with respect to the
mean-square error and mean absolute error of the daily maximum 8-h running-average ozone, thus marking a major milestone
for DL-based ozone prediction. O3ResNet has a very small bias without requiring additional postprocessing, and it generalizes
well so that new stations can be added with no need to retrain the neural network. Because the model works on hourly data, it
can be easily adapted to output other air quality metrics. We conclude that O3ResNet is sufficiently advanced and robust to
become a test application for operational air quality forecasting with DL.

SIGNIFICANCE STATEMENT: In this paper, we introduce a novel deep learning approach to forecast ground-level
ozone for rural and suburban environments on a local scale. Our model is able to outperform the state-of-the-art Co-
pernicus Atmosphere Monitoring Service regional ensemble forecast and is a major milestone toward a more reliable
ozone prediction. This is important because local-scale ozone forecasts using conventional methods show significant
bias or require site-dependent postprocessing. The findings suggest that the model presented in this article can become
an important tool for air quality prediction.
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1. Introduction

Data-driven methods like machine learning (ML) and in
particular deep learning (DL) have the potential to replace or
augment classical environmental modeling approaches be-
cause they can learn complex, intrinsic relationships among
observed variables and because they exhibit small bias by de-
sign (Schultz et al. 2021). Especially at small local scales, atmo-
spheric phenomena are often not well described by existing
theories, and classical model predictions are therefore imprecise.
As a complex interplay of meteorology, chemistry, emissions,
and landscape is involved (Solberg et al. 2016), this is especially
critical for ozone air pollution.

Exposure to ozone has a damaging effect on terrestrial life
forms (U.S. EPA 2013; Monks et al. 2015; Mills et al. 2018).
In particular, exposure to high ozone concentrations leads to
adverse health effects in humans, especially in the pulmonary
and cardiovascular systems (Fleming et al. 2018). Short-term
exposure to high ozone concentrations has drastic effects
(WHO 2013; Bell et al. 2014; U.S. EPA 2020), such as reduced
lung function or triggering of asthma. Consequently, it is im-
portant to have reliable predictions of ozone concentrations
several days in advance, in order to initiate appropriate

countermeasures where necessary. Regulatory authorities around
the world therefore define target and limit values for ozone.
These are typically based on the dailymaximum8-h running aver-
age (dma8; Fleming et al. 2018), so the analysis and prediction of
dma8 ozone is a task of high societal relevance.

Current forecast models are based on chemistry transport
models (CTMs) built on chemical and physical relationships and
equations to calculate air quality numerically. However, in such
models, uncertainties arise due to various causes, such as param-
eterizations, simplification of relationships and equations, or
other assumptions (Manders et al. 2012; Vautard et al. 2012;
Brunner et al. 2015; Bessagnet et al. 2016). These, in turn, lead
to systematic deviations between the model results and the ob-
servations (Otero et al. 2018). For example, the seasonal cycle of
ozone is not well represented by the CTMs, nor do they capture
the sensitivity of the models to meteorological drivers relevant
for ozone formation and removal processes such as solar radia-
tion and relative humidity well (Otero et al. 2018). Also, CTMs
are too coarse scaled to resolve local phenomena (Stock et al.
2014) and they impose a substantial computational burden in
solving chemical equations (Wang et al. 1999), which is critical
when deployed operationally, where wall-clock time is a hard
constraint (Baklanov et al. 2014).

To enable DL methods to learn how to reliably predict ozone
concentrations, one needs to apply domain knowledge for con-
structing the input data and the DL model. Temperature has an
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important influence on ozone, as chemical reactions are gener-
ally temperature dependent (Vautard et al. 2012). In particular,
extreme ozone concentrations are mainly linked to high tem-
perature periods (Fiore et al. 2015; Otero et al. 2016). Besides,
persistence is also a strong predictor of high ozone levels, as it
can indicate the presence of prolonged events and those with a
day-by-day increase in concentrations (Jahn and Hertig 2021).
Further meteorological factors that influence local ozone levels
are solar radiation and cloud cover, as well as relative humidity
and wind speed (Otero et al. 2016). Weng et al. (2022), based
on random forest and ridge regression, identify, for example,
temperature, surface solar radiation downward, and relative hu-
midity as the key meteorological drivers of ozone. Their study
also reveals, however, that the importance of individual varia-
bles can vary between different regions. Recent studies have
shown that neural networks (NNs) are skillful methods for
ozone-forecasting purposes and a variety of NN architectures
have been explored in this context. For example, Seltzer et al.
(2020) use fully connected networks (FCNs), Sayeed et al.
(2020) use convolutional neural networks (CNNs), Kleinert
et al. (2021) use CNNs with inception blocks, Ma et al. (2020)
use long short-term memory networks (LSTMs), and He et al.
(2022) and Kleinert et al. (2022) use U-Nets. However, to the
best of our knowledge, there has been no study on forecasting
of ozone at station locations that both reports good perfor-
mance for lead times greater than 2 days and provides a direct
comparison with a state-of-the-art CTM.

This paper presents the development of a generic DL-based
ozone forecasting system called O3ResNet, that is based on a
CNN architecture with residual blocks (He et al. 2016), to
forecast ground-level dma8 ozone at individual stations. To
showcase O3ResNet, we selected 328 stations in rural and
suburban areas across central Europe for study, although the
system can easily be adapted to other regions, provided that

enough training data are available. Results of O3ResNet are
more accurate than the Copernicus Atmosphere Monitoring
Service (CAMS) regional ensemble forecast (CAMS 2020),
which is the state-of-the-art air quality forecast system in Europe.
Therefore, O3ResNet provides a reliable dma8 ozone forecast
for the next 4 days, denoted D1–D4, which makes it a tool that is
suitable for operational air quality forecasting.

This paper begins with a description of the data and meth-
ods used, followed by the results section, in which we draw a
comparison with CAMS in addition to evaluating the overall
performance of our model. Here, we also provide insights
about the dependence of O3ResNet on its inputs and the lead
time of a meteorological forecast. The paper concludes with a
discussion of various aspects of O3ResNet, including a consid-
eration of the benefits and limitations of O3ResNet, as well as
thoughts on a road map toward operational deployment and
the extension to forecasting other air pollutants.

2. Data and methods

a. Data

O3ResNet has been trained with data from 328 observation
stations over central Europe (47.58–568N and 1.38–188E, see
Fig. 1). We make use of the Tropospheric Ozone Assessment
Report Database (TOAR DB; Schultz et al. 2017) and select
all stations located in a rural or suburban environments and
classified by the European Environmental Agency as back-
ground stations (European Parliament and Council of the
European Union 2008). This means that there is no dominant
air pollution source in the immediate vicinity. To prevent tem-
poral data leakage, data are divided blockwise along the time
axis into training (2000–15), validation (2016–18), and test
(2019–21) data. Further details on the data split and a robust-
ness analysis are presented in appendix A. Because of missing

FIG. 1. Geographic overview of the ozone measurement stations in central Europe (47.58–
568N and 1.38–188E). Of the 328 stations available for the 2000–21 period, all 328 stations were
used for training O3ResNet (represented by orange triangles with apex oriented to the right).
There are 212 stations available for validation (green triangle with apex oriented up) and 202 sta-
tions available for final testing (blue triangles with apex oriented left). The differences in the sta-
tion numbers result from the data availability in the TOARDB.
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or terminated observations, the number of stations varies for
the validation (212) and test (202) subsets. In total, there are
over 800 000 training samples, almost 200 000 for validation,
and 170 000 for testing.

b. Inputs

For inputs, O3ResNet makes use of hourly time series of
three chemical and seven meteorological variables at or near
ground level: ozone (O3), nitric oxide (NO), nitrogen dioxide
(NO2), cloud cover, planetary boundary layer height, pres-
sure, relative humidity, temperature, and the zonal and merid-
ional wind components. Relative humidity is calculated from
temperature, dewpoint temperature, and pressure. The selection
of these parameters is based on previous research in Leufen et al.
(2022a), so we do not apply any new feature selection here.
Chemical parameters (O3, NO, and NO2) are provided by the
TOAR DB, and meteorological variables originate from the
ERA5 reanalysis dataset from the EuropeanCentre forMedium-
Range Weather Forecasts (ECMWF) (Hersbach et al. 2020),
with grid data mapped to station locations using nearest-neighbor
interpolation. All time series are filtered into long-term (LT) and
short-term (ST) components, with a finite impulse response
(FIR) filter as in Leufen et al. (2022a). For causality reasons, we
use the observations for lagged time steps (ti# t0) and climatology
for time steps in the future (ti . t0) to calculate the LT and ST
components of the chemical variables, as proposed inLeufen et al.
(2022a). For the meteorological variables, we use reanalysis data
as a pseudoforecast for all time steps ti. A more detailed discus-
sion on the time filtering can be found in appendix A. For the
chemical inputs, we choose time steps of the past 3 days (72 h)
from LT and ST components ([t0 2 3 days, t0]); the meteorologi-
cal components cover, in addition, the forecast period on the in-
terval of [t0 2 3 days, t0 1 4 days] with a total of 168 hourly
values. All inputs are transformed by Z-score normalization to
have 0mean and a standard deviation of 1.

c. Target

The target variable of this study is dma8 ozone as defined
by the European Parliament and Council of the European
Union (2008) as the highest 8-h moving average of all ozone
concentrations observed between 1700 local time of the previ-
ous day and 1600 local time of the current day. We predict
dma8 ozone for the next 4 days ([t0 1 1 day, t0 1 4 days]). The
daily resolved dma8 ozone for the model validation is obtained
directly from TOAR DB. The temporal distribution of the tar-
get values in all subsets is shown in Fig. A2 in appendix A. Like
the inputs, the targets are transformed by Z-score normalization.
Figure 2 provides an overview of the entire workflow.

d. Hyperparameter tuning

We test different architectures like FCN, recurrent NN
(RNN) based on LSTM and gated recurrent unit (GRU),
CNN (with and without residual blocks), and U-Net. To find
an optimal hyperparameter configuration for each NN archi-
tecture, we train NNs with various configurations over 100
epochs and evaluate the mean-square error (MSE) given by

MSE 5
1

ninj
∑

ni, nj

i, j
(yi,j 2 ŷi,j)2 (1)

on the training and validation data, where ni is the number of
samples, nj is the number of forecast steps, yi,j is the observed
value, and ŷi,j is the NN’s forecast. After testing all alternative
model architectures, we chose a CNN architecture with residual
blocks as the best performing on validation data. In appendix B,
we present details on the hyperparameter optimization and
model selection strategies and provide technical background on
the operating system, software, and the duration of preprocess-
ing, training, and inference.

FIG. 2. Visualization of the training and inference workflow of O3ResNet as described in this paper. The chemical variables are taken
from the TOAR DB (Schultz et al. 2017) as in situ observations and filtered into LT and ST components with the help of climatological
statistics. The meteorological variables are obtained as gridded data from ERA5 and are mapped to the measurement stations by nearest
neighbor and also split into LT and ST by filter. Note that variable names are listed according to the identifiers in the official documenta-
tion of TOAR DB (TOAR Data Team 2023) and ERA5 (Copernicus Climate Change Service 2022). All four branches are then input to
O3ResNet, which makes a 4-day forecast of dma8 ozone.
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e. CNN architecture

Since we found the CNN architecture with residual blocks
to be the best-performing DL architecture on validation data,
we describe the exact architecture in more detail below. This
is the model we refer to as O3ResNet. The O3ResNet archi-
tecture consists of eight residual blocks, 20 hidden layers, and
a total of about 800 000 trainable parameters. A residual
block consists of two convolutional layers, where the first
layer is bypassed by a skip connection to stabilize the training
and thus allow training of deeper networks, as gradients can
propagate more directly during backpropagation (He et al.
2016). We follow Zheng et al. (2014) and apply all convolutions
only along the time axis. A special feature of the O3ResNet
architecture is the four input branches, consisting of an LT and
ST component of the chemical and meteorological inputs. The
motivation for these separate branches is that the NN can ini-
tially learn local features of the different variable types, chemi-
cal and meteorological variables, time scales, and LT and ST
components, and later put this knowledge into a global context
to make a prediction for ozone. The global context is learned
in the tail of the network, starting from a concatenation layer
up to the output layer. Each branch consists of two convolu-
tional layers with thirty-two 7 3 1 and thirty-two 3 3 1 filters
and a maxpooling operation (with pool size 2 3 1), succeeded
by four residual blocks with thirty-two 3 3 1 filters and four

residual blocks with sixty-four 3 3 1 filters. The outputs of each
branch are flattened and concatenated into a layer, followed
by a dense layer of 128 neurons and the output layer of four
neurons, one for each day to be predicted. Except for the output
layer, which features linear activation, all layers use a parametric
rectified linear unit (PReLU; He et al. 2015) activation function.
The architecture of O3ResNet is shown in Fig. 3. Appendix B
gives further details on the O3ResNet’s hyperparameters (see
Table B4 of appendix B for a list of hyperparameters) and on the
alternative network architectures.

f. CAMS

We compare O3ResNet with the state-of-the-art regional
chemistry transport model ensemble with data assimilation
from CAMS. The data are downloaded from the CAMS At-
mosphere Data Store (ADS; ADS 2020) and preserved on lo-
cal systems, as ADS hosts data on a rolling 3-yr archive.
CAMS provides 96-h forecasts on a 0.18 3 0.18 grid for
Europe based on the median value approach of the nine ensem-
ble members (Marécal et al. 2015). Details on the ensemble
members are provided in appendix C. To produce the CAMS
ensemble forecast, the median is calculated for each pixel indi-
vidually using interpolated forecasts of all ensemble members.
As CAMS provides a grid forecast, we apply nearest-neighbor
interpolation to extract data at the station locations. We have

FIG. 3. Network architecture of O3ResNet consisting of convolutional layers (green), PReLU and linear activation
(red), maxpooling layers (teal), batch normalization layers (yellow), residual blocks (orange), residual blocks with ad-
ditional 1 3 1 filter to increase number of filters (cyan), dense layers (blue), add layer (purple), and input, dropout,
flatten, concatenate, and split layers (all gray). Each branch is highlighted by a separate gray box. Numbers next to a
layer show the numbers of filters and weights and the shape. Shapes of the inputs correspond to 72 hourly values for
three chemical variables on the interval [t0 2 3 days, t0] and to 168 hourly values for seven meteorological variables
on [t0 2 3 days, t0 1 4 days]. The graphic was created with Net2Vis (Bauerle et al. 2021) and edited afterward.
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also tested bilinear interpolation as an alternative. Bilinear inter-
polation performed better at some stations and worse at others,
so that on average, the choice of interpolation method has no
discernable effect on the CAMS performance. Finally, dma8
ozone is calculated from the hourly data at each station. Peuch
et al. (2022) provide a detailed overview on CAMS.

g. Evaluation

The final evaluation of the results is performed exclusively
on the test data, which were used neither for training nor for
hyperparameter optimization. For evaluation, we use the
root-mean-square error (RMSE), which is given by the square
root of the MSE from Eq. (1),

RMSE 5
�������
MSE

√
, (2)

as well as the mean error (ME) given by

ME 5
1

ninj
∑

ni, nj

i, j
(ŷi,j 2 yi,j) 5 ŷ 2 y, (3)

which can also be expressed as the difference between the
means of forecast ŷ and observation y. To compare models A
and B with each other directly, we resort to the skill score
given by

SS(A, B) 5 1 2
MSEA

MSEB
, (4)

where MSEA is the MSE of model A and MSEB is the MSE
of model B.

3. Results

Figure 4 shows the RMSE as a box-and-whisker diagram ag-
gregated over all stations. O3ResNet yields a smaller RMSE for
all forecast days when compared with CAMS. O3ResNet
achieves the smallest error for the D1 forecast, with 4.3 ppb.
The RMSE increases to 5.5 ppb for the D4 forecast, with almost

identical RMSEonD3 andD4.Overall, theRMSE forO3ResNet
lies between 3.9 and 5.8 ppb for the 25th and 75th percentiles
of all stations. CAMS, on the other hand, shows a noticeably
higher RMSE, with a mean RMSE ranging from 7.3 ppb on
D1 to 7.9 ppb on D4. Moreover, a wider spread of RMSE
across stations can be seen for CAMS. Thus, the 25th and 75th
percentiles are 6.5 and 8.6 ppb, respectively. We also show the
spatial distribution of the RMSE of O3ResNet and CAMS in
appendix C (Figs. C2 and C3, respectively).

The ME shown in Fig. 5 provides insight into systematic
biases between prediction and observation. For O3ResNet,
we can see that the ME averaged over all stations is centered
between20.35 and20.01 ppb for all forecast days, with an in-
terquartile range (IQR) between 0.92 and 1.48 ppb. TheME for
the CAMS predictions averages between 10.32 and 10.78 ppb,
with the median for D2–D4 being larger than 10.83 ppb.
Overall, the CAMS ME shows a wide variation, with an IQR
of.2.6 ppb.

The analysis of the ME shows that CAMS suffers from a con-
sistent high bias in relation to the observations. Therefore, we
next correct all forecasts of CAMS and O3ResNet by 1) remov-
ing the averaged background value for each station and 2) sub-
tracting a 30-day running mean from the forecasts for each
station. This reveals what contribution to the total error is due
to an improper accounting of the variability of ozone and what
contribution is due to a systematic deviation. Figure 6 shows the
results for bias-corrected predictions using method 1. Here, the

FIG. 4. Distribution of the RMSE of O3ResNet and CAMS over
all test stations visualized as a box-and-whisker diagram. The dif-
ferent shades of blue correspond to the error from D1 (light blue)
to D4 (dark blue). The boxes indicate the 25th and 75th quantile of
the distribution, the line within the box shows the median, and the
white triangle shows the mean.

FIG. 5. As in Fig. 4, but for ME.

FIG. 6. As in Fig. 4, but for the bias-corrected RMSE. The cor-
rection is applied by removing the average background concentra-
tion at each station.
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adjustment leads to a reduction in the RMSE for the CAMS
predictions. Accordingly, since O3ResNet already exhibited a
low ME, this postprocessing method does not lead to any im-
provement for O3ResNet. In contrast, the bias-corrected fore-
casts using method 2 lead to an improvement for CAMS and
O3ResNet as measured by the RMSE (see Fig. 7). In all cases, it
can be concluded that O3ResNet can better represent the vari-
ability of ozone.

Since ozone concentrations exhibit pronounced seasonal vari-
ation and the variance also varies with season, we next consider
the seasonality of the error. Figure 8 shows the RMSE aggre-
gated over all forecast steps for each month across all stations
for the entire test period. For each individual month, O3ResNet
has a lower RMSE than CAMS. In addition, the IQR indicated
by the width of the band of quantiles is narrower for O3ResNet.
Both findings are in line with the results presented so far. In-
deed, we can identify a season-dependent performance for both
O3ResNet and CAMS in Fig. 8. Overall, both models perform
best in the spring months March–May (MAM), whereas the
summer months June–August (JJA) show the highest error.
Note that O3ResNet can provide notably better forecasts than

CAMS for JJA 2019 but that for JJA 2021 neither model can
provide decent forecasts, especially in July.

To provide further insight into the quality of the O3ResNet
forecasts, we use the likelihood-base rate factorization after
Murphy and Winkler (1987). Figure 9 compares observation
and prediction of O3ResNet. Shown in the dashed lines is the
conditional distribution of the probability that, given a partic-
ular observation, O3ResNet can issue a proper forecast in ad-
vance. Considering the climatological distribution of the
observations, represented by the gray bars (marginal distribu-
tion), this view allows us to draw conclusions about how well
O3ResNet can discriminate between different observation
events (Wilks 2006). It can be seen that the reference line and
the median of the conditional quantile are in agreement within
the interval between 20 and 55 ppb, and thus, O3ResNet can
distinguish individual observations well in this interval. How-
ever, for small ozone values, the model tends to overestimate
slightly, indicated by the fold in the lines of the conditional
quantiles. Also, for ozone values exceeding 60 ppb, 03ResNet
cannot fully follow the observations, tending to underestimate
the ozone concentration. However, observations of high ozone
concentrations are severely underrepresented in the training
data, and regression approaches such as O3ResNet generally
tend to favor values toward the mean. For the forecast horizon,
increasing uncertainty with lead time is visible as the lines of the
quantiles of the conditional distribution for D4 of the forecast
are more widely spaced and both ends of the lines curve more
pronouncedly than for D1. Between 20 and 50 ppb, however,
the reference lines and median continue to be close to each
other, indicating a reliable forecast issued by O3ResNet. The
likelihood-base rate factorization for CAMS can be found in
appendix C in Fig. C1. Here it can be seen that CAMS is
not able to distinguish well between different observation
events, because the slope of the conditional quantile lines
deviates from the ideal reference line, meaning that smaller
values are generally overestimated and high concentrations
are underestimated.

a. Importance of input branches

To shed light on the robustness of the O3ResNet forecasts,
we follow the single-pass approach (Breiman 2001). To under-
stand the impact of each individual branch on O3ResNet, we
fix all inputs of a single input branch to their average values
and examine how much the resulting prediction differs from
the unperturbed prediction. We measure this by the skill
score as shown in Eq. (4). The more the skill score of the
mean-fixed O3ResNet decreases with respect to the original
O3ResNet forecasts, the greater the influence of the respec-
tive branch. Results are presented in Fig. 10. Considering all
forecast days, the LT chemical and ST meteorological inputs
have the strongest influence on the predicted ozone concen-
trations. The LT chemical inputs are particularly important
for the D1 forecast and appear to be less important for D2 to
D4. Moreover, for the D1 forecast, the ST component of the
chemical inputs is important to some extent, whereas for the
other days this is not evident. LT meteorological inputs only
play a minor role for O3ResNet for all forecast days. In

FIG. 7. As in Fig. 4, but for the seasonal bias-corrected RMSE. For
bias correction, we remove a 30-day running mean for each station.

FIG. 8. Month-to-month variation of performance (RMSE) for
O3ResNet (blue) and CAMS (orange) during the test period.
Mean RMSE over all stations is shown as a thick line with crosses,
and 25th and 75th quantiles are illustrated as bands.
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contrast, the ST meteorological components are relevant for
all forecast days, and their importance even increases from
D1 to the following days.

From a meteorological perspective, these sensitivities can
be explained as follows. The LT chemical inputs allowO3ResNet
to perform a bias correction, as they provide information about
the long-term background concentration. In addition, these com-
ponents also add information about the season, since, for exam-
ple, average ozone concentrations are higher in summer than in
winter. Note that O3ResNet has no explicit information about
the day or month of the samples it is processing. The relevance
of the ST chemical variables can be explained by the autocorrela-
tion of ozone. As it decreases with lead time, the importance of

past observations also drops. By contrast, the LT components of
the meteorological variables cannot add any valuable informa-
tion to O3ResNet since all information about seasonality is al-
ready contained in the LT chemical variables. However, the ST
components of the meteorological inputs play an important role,
since the deviations from long-term conditions contained therein
characterize the current and future weather situation. For exam-
ple, the ST meteorological variables provide information about
the daily maximum temperature and humidity in the forecast
horizon.

b. Influence of the meteorological forecast lead time

Since this study uses ERA5 data as a pseudoforecast and
over an extended time horizon to calculate the LT and ST
components (see appendix A), questions arise as to how
O3ResNet would behave in an operational setting where me-
teorological forecasts have a more limited lead time and the
forecast error tends to grow with increasing lead time. A sen-
sitivity study, outlined subsequently, reveals that the forecast
quality of O3ResNet is hardly affected by reducing the lead
time of the meteorological forecast down to 4 days. To con-
duct this sensitivity study, we gradually decrease the maxi-
mum lead time for the meteorological variables. Values after
this maximum lead time are replenished by the climatological
statistics, as described in Leufen et al. (2022a) and as is done
for the chemical variables. We do not retrain O3ResNet on
these modified inputs but analyze how O3ResNet responds to
this new information and whether the skill of the ozone pre-
diction decreases in dependence on the meteorological fore-
cast lead time. Results are shown in Fig. 11.

At large lead times, it can be seen that the reduction of the lead
time of the meteorological variables from 168 to 93 h has no effect
on the forecast performance of O3ResNet, as the skill score stays
close to zero, indicating neither a gain nor a loss of skill. Note that
we test with larger lead times than the 4-days forecast horizon of
O3ResNet, as longer time series are mandatory to calculate an ex-
act LT and ST decomposition (see appendix A). As this analysis
shows, a blurred decomposition does not decrease the model’s

FIG. 9. Visualization of the likelihood-base rate factorization for the (left) D1 and (right) D4 forecast of O3ResNet.
The factorization consists of the conditional distribution of the probability that a prediction is made in advance of an
incoming observation and the frequency distribution of the observations. The conditional distribution is represented
by the 10th, 25th, 50th, 75th, and 90th quantiles using different dashed lines and the optimal reference line. The fre-
quency distribution of the observations is shown by a histogram (gray bars) with logarithmic scale on the right axis.

FIG. 10. Evaluation of the importance of each input branch for
the prediction of O3ResNet generated using the single-pass ap-
proach. The skill score is calculated in reference to the unperturbed
prediction. The impact on each prediction day is shown by blue col-
ors from D1 (light blue) to D4 (dark blue). A large negative value
indicates a strong dependence, whereas a value close to 0 describes
a weaker dependence.
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performance at all. A further decrease of the lead time up to the
extreme case of 0 h results in a continuous decrease of the predic-
tion skill for all days. Therefore, the forecast of O3ResNet always
deteriorates only for the forecast days for which no meteorological
forecast is available and climatology is fallen back on as a substi-
tute. For example, when the lead time of the meteorological varia-
bles is 48 h, only the ozone forecasts for D3 and D4 worsen, with
the D3 forecast having an equal skill to the CAMS forecast in this
particular case. Conversely, the ozone forecasts for D1 and D2 are
not affected at all and remain at their original skill level. This find-
ing can be observed for all forecast days. Besides, results show
that the D1 forecast of O3ResNet is more skillful than CAMS
even at a lead time of 0 h.

4. Discussion and conclusions

This paper outlines the development of a skillful and reli-
able forecasting system for a 4-day point forecast of dma8
ozone based on DL methods. O3ResNet performs better than
the state-of-the-art CAMS regional ensemble. O3ResNet was
developed with data from central Europe but can easily be
trained for other regions and, in principle, for other ozone
metrics or even other air pollutants such as particulate matter
or nitrogen oxides, provided sufficient data are available. The
transferability of O3ResNet will be the subject of another
study. The results above show that the combination of a CNN
architecture with residual blocks, the temporal decomposition
of inputs into long term and short term, and the integration of
a weather forecast for all meteorological input parameters are
the key ingredients for our new high-quality ozone forecasting
system.

The outstanding advantages of O3ResNet are a nearly bias-
free forecast as well as a low seasonal variation of the forecast
quality. O3ResNet provides high-quality predictions, espe-
cially in the range of 20–55 ppb and for September–May.
Only at the edges of the distribution and for forecasts during
the summer season does the performance decrease a bit, al-
though O3ResNet still outperforms the CAMS regional
model ensemble. First, from a statistical point of view, this is
related to heteroscedasticity since the variability of ozone is
very high in summer and lower in winter. Second, ozone in
summer is more determined by the local daily maximum tem-
perature (Otero et al. 2016), which is less well reflected in the
meteorological forecasts due to limited spatial model resolu-
tion. While such processes generally pose a problem for con-
ventional CTMs as well (Stock et al. 2014; Young et al. 2018),
O3ResNet can at least better accommodate them. The nearly
bias-free forecast can be attributed to O3ResNet’s under-
standing of the LT chemical variables, which allows O3ResNet
to determine a correct concentration level at the target station.
The ST meteorological inputs make a major contribution to the
O3ResNet forecast quality, because they provide information
about the current weather situation.

Analysis of the dependence on the horizon of the weather
forecast shows that O3ResNet can already provide a fully reli-
able forecast of future ozone concentrations with a weather
forecast of similar lead time. With a 48-h weather forecast,
O3ResNet achieves an adequate 2-day forecast. This shows,
with respect to previous studies such as Kleinert et al. (2021)
or Leufen et al. (2022a), that ozone prediction with DL meth-
ods is limited not by a lack of understanding the relationship
between weather and air quality but, in particular, by uncer-
tainty about future weather, and that the inclusion of a skillful
weather forecast contributes great value to DL-based ozone
predictions.

In comparison with the CAMS regional ensemble median
forecast, O3ResNet shows significant improvements for all fore-
cast days. Moreover, CAMS requires additional postprocessing
to deliver forecasts on a station level, whereas O3ResNet does
not. Peuch et al. (2022) mention the development of various
postprocessing methods, including ML, to adapt the raw CAMS
forecasts to point forecasts with higher skill that are expected to
be deployed in the coming years. O3ResNet demonstrates that
high-quality ozone forecasts do not necessarily require the
running of a complete CTM system but can alternatively
also be produced using DL plus weather forecasts, which is
much faster. A 4-day forecast at all 328 stations of this study
takes about 10 s.

In conclusion, we suggest a number of tests and improvements
before applying O3ResNet operationally. First, ERA5 is not a
real forecast, but a reanalysis, meaning that the frequency of up-
dates through data assimilation is much higher. Nevertheless, it
can be reasonably expected that the forecast quality of O3ResNet
would not drop dramatically, as relevant numerical weather
prediction on comparable spatial and temporal resolution,
such as the Integrated Forecasting System (IFS) operated
by the ECMWF, already provides a very reliable forecast
for one week ahead (see Bauer et al. 2015; Haiden et al.
2022). Second, O3ResNet is currently trained in rural and

FIG. 11. Skill score of the forecast quality of O3ResNet depend-
ing on the lead time of the meteorological forecast in relation to a
forecast based on quasi-unlimited lead time. The forecast days are
individually colored for D1 (blue), D2 (orange), D3 (green), and
D4 (red). The solid lines represent the mean skill scores, and the
bands represent the range between the 25th and 75th quantiles. In
addition, the skill scores for CAMS in relation to the original
O3ResNet forecast are shown as dashed reference lines. Negative
skill scores mean that the forecast for the corresponding meteoro-
logical forecast lead time is worse than the best case. At a skill
score of 0, the difference disappears.
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suburban areas on stations classified as background. To provide
a full range of forecasts, the model should also be tested in ur-
ban areas as well as in regions with dominant air pollution sour-
ces, which may require the integration of emissions data. Third,
it is recommended that the predictive power for peak ozone con-
centrations be further investigated. Although O3ResNet is capa-
ble of simulating concentrations of dma8 ozone up to 80 ppb,
the most extreme observed values are not reproduced satisfacto-
rily. For example, O3ResNet for July 2021 does not match with
observations well. Herein, uncertainty prediction, for example,
using probabilistic DL architectures as in Foster et al. (2021) or
following Barnes et al. (2021), who predict the parameters of a
probability distribution instead of the deterministic values, could
add useful information. Also, transformers (Vaswani et al.
2017), or more specifically, a temporal fusion transformer (Lim
et al. 2021), harbors promising potential. In combination with
suitable interpolation techniques, such DL models may even be
able to generate useful forecasts at locations where no measure-
ments of air pollutant concentrations are performed.
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data, and the Jülich Supercomputing Center for computing
time under the DeepACF project. This research has been
supported by the European Research Council, H2020 Re-
search Infrastructures (IntelliAQ; Grant 787576) and the
DFG Funding Programme, Open Access Publication Fund-
ing (2022–24).

Data availability statement. Input data, forecasts on test
data, and O3ResNet model are openly available online (http://
doi.org/10.34730/76529959732a464486ec5b9277152233).

APPENDIX A

Cross Validation and Data Filtering

We perform a cross validation of the best model architec-
ture (O3ResNet) by rotating the subsets, keeping the length
of each subset, 3 yr for validation and testing and 12 yr for
training, as well as the hyperparameter configuration. Data
are always split blockwise along time. Therefore, in total,
we test six different arrangements. Results are shown in
Table A1 and Fig. A1. It can be seen that the RMSE is
close for all orderings of subsets. Yet there is a deviation in

performance when positioning the testing phase at the very
beginning. Note that the number of samples varies from about
160000 (train/validate/test) to 225000 (test/train/validate) be-
cause of a large temporal and spatial variability of data coverage.
In Fig. A2, we furthermore show the temporal distribution
of the target dma8 ozone in the final subset ordering (train/
validate/test). It can be seen that the temporal distribution is
very similar for all subsets.

To filter the data, all time series are split into LT and ST
components by means of an FIR filter with a Kaiser win-
dow (Kaiser 1966) with parameter b 5 5, a cutoff period of
21 days, and order of N 5 42 days. For applying the FIR
filter causally to all chemical variables, we follow the approach
of Leufen et al. (2022a) and use climatology for time steps in
the lead time, whereas reanalysis data are used as a pseudo-
forecast for the meteorological variables.

The decomposition is formalized by the following steps.
First, we calculate a climatological statistic ai that contains the

FIG. A1. Visualization of cross-validation results, as shown in
Table A1.

FIG. A2. Temporal distribution of dma8 ozone aggregated over
all observations and stations illustrated as a box-and-whisker dia-
gram. Distributions of the training (orange), validation (green),
and testing (blue) data are highlighted in color.

TABLE A1. Tabular results of cross validation implemented
by rotating training, validation, and testing subsets, showing the
RMSE (ppb), also visualized in Fig. A1.

Data split D1 D2 D3 D4 Mean for D1–D4

Train/validate/test 4.55 5.43 5.69 5.73 5.35
Train/test/validate 4.59 5.56 5.64 5.72 5.38
Validate/train/test 4.25 5.14 5.25 5.38 5.01
Validate/test/train 4.71 5.71 5.87 5.90 5.55
Test/train/validate 5.13 6.28 6.45 6.51 6.09
Test/validate/train 5.25 6.42 6.69 6.73 6.27
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seasonal cycle of the monthly mean as well as the diurnal cy-
cle. Heteroscedasticity is taken into account by allowing this
diurnal cycle to vary over the year:

ai 5 f (xi, ti): (A1)

A composite time series xi is created from the raw time series
xi and the climatological statistic ai for each time t0 at which a
forecast is initiated. The combination is done depending on
the lead time tl. For the chemical variables, tl 5 0 always ap-
plies, and for the meteorological variables, tl " ‘. For the
analysis of the dependence of O3ResNet on the lead time of
the meteorological variables, tl is set to a lead time of between
0 and 168 h accordingly:

x^ i(t0) 5
xi, ti # t0 1 tl
ai, ti . t0 1 tl

:

{
(A2)

The properties bi of the FIR filter are determined by the
Kaiser window given for the order of N 5 42 days. Apply-
ing the filter results in the LT components x(LT)i of the time
series:

x(LT)n (t0) 5 ∑
t01N/2

i5t02N/2
bix

^

n2i(t0): (A3)

Last, the ST components x(ST)i are calculated by the differ-
ence between the original time series xi and the LT compo-
nents x(LT):

x(ST)i (t0) 5 xi 2 x(LT)i (t0): (A4)

This means in reverse that the sum of LT and ST compo-
nents always adds up to the original time series.

APPENDIX B

Technical Details

We train all NNs for this study on the Helmholtz Data Fed-
eration Machine Learning System (HDF-ML) at the Jülich
Supercomputing Centre in Jülich, Germany. In total, HDF-
ML is equipped with 15 computer nodes, each running 4

Nvidia Tesla V100 GPUs and 2 Intel Xeon Gold 6126 with 12
cores (24HT). For each training, we use a single node with all
available GPUs since the computation times of the training
are moderate (between half an hour and up to 4 h). Training
as well as pre- and postprocessing are carried out with the re-
search software MLAir (Leufen et al. 2022b). MLAir is based
on the programming language Python, provides a complete
workflow for performing ML experiments with a special focus
on time series predictions (Leufen et al. 2021), and thereby
makes use of TensorFlow (Abadi et al. 2015) for the ML
training.

Preprocessing of the raw data of a single station covering
the entire time period takes on average 108 s, which means
that preprocessing of a single sample is about 0.03 s on av-
erage. Approximately 90% of the preprocessing time is
spent calculating the decomposition into LT and ST compo-
nents, as the data for each sample change with t0. For this
study, we use 12 parallel threads, so preprocessing is 12 times as
fast on our systems. The inference time for a single station is ap-
proximately 2.8 s (0.0009 s per sample). Measured inference time
includes losses due to input/output (I/O) operations such as load-
ing the processed data from disk and storing the predictions
locally. The actual NN prediction, without I/O operations, is
performed on 4 GPUs in parallel. Numbers are also shown in
Table B1.

With regard to hyperparameter tuning strategy, we apply a
kind of evolutionary algorithmwhen searching for optimal hyper-
parameters. For the initial first generation, we randomly draw 70
combinations of hyperparameters according to the range of val-
ues, the samplingmode, and the variation properties shown in Ta-
bles B2 and B3 and measure the validation error. For the second
generation, we select the top 10 performing hyperparameter com-
binations in terms of validation error and again draw random
combinations from this new set, allowing all parameters to further
vary according to the specified variation properties. We do not

TABLE B1. Preprocessing and inference time.

Operation Data Duration (s)

Preprocessing Station 108
Preprocessing Sample 0.03
Inference Station 2.8
Inference Sample 0.0009

TABLE B2. Overview of all hyperparameters tuned in this study. Each parameter is selected from the given range and with the
indicated sampling method. Moreover, continuous parameters are varied according to the variation ratio. Details on the NN
architectures are provided in Table B3. Parameters marked with a dagger symbol are not tested for ResNet and U-Net.

Parameter Range Sampling Variation (%)

Learning rate [0.0001, … , 0.1] Power of 10 80
Learning rate decay [0, 0.001, … , 0.1] Power of 10 50
Batch size {256, 512, 1024} Discrete –

Dropout [0, … , 0.7] Linear 50
Batch normalization {true, false} Discrete –

l1 regularizer [0, 0.001, … , 0.1] Power of 10 50
l2 regularizer [0, 0.001, … , 0.1] Power of 10 50
Activation function {relu, leakyrelu, prelu, eluy, seluy, tanhy} Discrete }

NN architecture See Table B3 Discrete }
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test the exact same combination a second time. For the second
generation, we reduce the number of experiments by 30%. In
each subsequent generation, we apply the same scheme but re-
duce the number of best performing combinations by 1 and the
number of experiments by 30% each time. After running 10

generations, we consider the combination that leads to the lowest
validation error across generations to be the optimal choice of hy-
perparameters. We apply this search strategy separately for each
NN architecture. Table B4 gives the list of hyperparameters.

To select the best DL architecture/model, we look at the
RMSE over all stations (Fig. B1). It can be seen that the
forecasts of the CNN with residual blocks (ResNet) and
U-Net are, with an average RMSE of 5.1 ppb, better than
those of the other DL models (between 5.6 and 5.8 ppb).
However, the distributions of the RMSE for ResNet and
U-Net do not differ significantly in a Mann–Whitney U test.
Therefore, we apply a bootstrap procedure with 1000 repe-
titions as a second evaluation step. We split the entire test
dataset into monthly blocks, randomly sample 36 blocks
with replacement for each iteration, and calculate the
RMSE on each sample. In the bootstrap approach as shown
in Fig. B2, the ResNet architecture performs slightly better,
so we use it for further analysis.

TABLE B3. List of NN specific hyperparameters referring to the model architecture. The model column contains information about
the chosen architecture and number of different configurations. A slash in the values column indicates the number of neurons’
respective filters per layer.

Model Parameter Values

FCN (103) Hidden layers and neurons {32, 64, 64/32, 128/32, 128/64, 128/64/32, … , 512/256/128}
Dense layer (after concatenation) {no, 256, 256/64, 256/64/16}

CNN (123) Layers [1, 2, … , 6]
Max pooling {no, every second layer, always}
Kernel size {(3, 1), (5, 1)}
Filter {16, 32, 64, 128}
Dense layer (after concatenation) {no, 128, 256}

RNN (103) Recurrent layer {10, 32, 32/32, 64, 64,/64, 64/32, … , 256/128}
Unit type {LSTM, GRU}
Dense layer (after concatenation) {no, 32, 64, 128}

ResNet (163) Residual blocks [6, 7, … , 12]
Kernel size {(3, 1)}
Filter {16/32/64, 16/32, 32/64, 32/64/128}
Consecutive layers with same filter [2, 4]
Dense layer (after concatenation) {no, 128}

U-Net (93) Down blocks with filter {16/32, 16/32/64, 16/32/64/128}
Kernel size {(3, 1)}
Dense layer (before concatenation) {no, 128}
Dense layer (after concatenation) {no, 128}

All Dropout {no, only final layer, every second layer, always}
Output activation {linear}

TABLE B4. Summary of the hyperparameters of O3ResNet.

Parameter Range

Learning rate 0.0003
Learning-rate decay 0.0
Batch size 1024
Dropout 0.59
Batch normalization False
l1 regularizer 0.095
l2 regularizer 0.12
Activation function Prelu
NN architecture See Fig. 3
Trainable parameters 807, 812
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APPENDIX C

Additional Information on CAMS

A good overview of the regional CAMS ensemble can
be found in Peuch et al. (2022). The regional CAMS en-
semble is composed of the nine members: “CHIMERE”
(Menut et al. 2013), Danish Eulerian Hemispheric Model
(DEHM; Christensen 1997), European Monitoring and Evalu-
ation Programme (EMEP; Simpson et al. 2012), European Air
Pollution Dispersion-Inverse Model (EURAD-IM; Hass et al.
1995; Memmesheimer et al. 2004), Global Environmental Mul-
tiscale Air Quality model (GEM-AQ; Kaminski et al. 2008),
Long Term Ozone Simulation European Operational Smog
(LOTOS-EUROS; Schaap et al. 2008), Multi-Scale Atmospheric
Transport and Chemistry model (MATCH; Robertson et al.
1999; Andersson et al. 2015), Modèle de Chimie Atmosphérique

à Grande Echelle (MOCAGE; Josse et al. 2004; Dufour et al.
2005), and System for Integrated Modelling of Atmospheric
Composition (SILAM; Sofiev et al. 2008). Each model is first
interpolated on a 0.18 3 0.18 grid individually, and then the
median is calculated for each grid cell. More information
about this median value approach and in-depth details about
the ensemble members involved are presented in Marécal
et al. (2015).

With regard to the joint distribution of CAMS, Fig. C1
gives the likelihood-base rate factorization for CAMS; it
can be seen that CAMS is not able to distinguish well be-
tween different observation events, with smaller values
generally overestimated and high concentrations underesti-
mated. In terms of error maps, the spatial distribution of
the RMSE is given for O3ResNet (Fig. C2) and CAMS
(Fig. C3).

FIG. B1. Distribution of the RMSE aggregated over test data (n5 202 stations) visualized as a
box-and-whisker diagram. Results from a Mann–Whitney U test are shown additionally. The
presence of three asterisks indicates a significance level of p , 0.001, and “ns” (not significant)
corresponds to p. 0.05.

FIG. B2. Distribution of the RMSE calculated on n5 1000 bootstrap samples (with replacement)
plotted as a box-and-whisker diagram. Significance levels are indicated as in Fig. B1.
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FIG. C1. As in Fig. 9, but for CAMS.

FIG. C2. Spatial distribution of the RMSE of O3ResNet averaged on all forecast days at each ob-
servation station.

FIG. C3. As in Fig. C2, but for the CAMS forecast.
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