001007055 001__ 1007055 001007055 005__ 20230516202233.0 001007055 0247_ $$2Handle$$a2128/34357 001007055 037__ $$aFZJ-2023-01953 001007055 041__ $$aEnglish 001007055 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj 001007055 1112_ $$aWACQT Virtual Workshop on Quantum Technology$$cOnline$$d2023-04-26 - 2023-04-27$$wSweden 001007055 245__ $$aObservation of Josephson Harmonics in Tunnel Junctions 001007055 260__ $$c2023 001007055 3367_ $$033$$2EndNote$$aConference Paper 001007055 3367_ $$2DataCite$$aOther 001007055 3367_ $$2BibTeX$$aINPROCEEDINGS 001007055 3367_ $$2DRIVER$$aconferenceObject 001007055 3367_ $$2ORCID$$aLECTURE_SPEECH 001007055 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1684236675_29548$$xInvited 001007055 502__ $$cChalmers University 001007055 520__ $$aThe Josephson effect is the keystone of quantum computing with superconductinghardware. In this talk, I will show that the celebrated sin(phi) Josephsonrelation fails to fully describe the measured energy spectra of many transmonsamples. While the microscopic theory of Josephson junctions contains higherharmonics sin(2*phi), sin(3*phi), ..., these have generally been considerednegligible in tunnel junctions. However, this assumption is unjustified due tothe non-uniformity of the commonly used AlOx tunnel barriers, which can causehigh-transparency conduction channels. Indeed, by including the Josephsonharmonics in the transmon Hamiltonian, we can greatly improve the agreementbetween computed and measured energy spectra. The observation of Josephsonharmonics in tunnel junctions prompts a reevaluation of our theoretical modelsfor superconducting hardware. 001007055 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001007055 8564_ $$uhttps://youtu.be/vgyZh5Ff_iE?t=6120 001007055 8564_ $$uhttps://juser.fz-juelich.de/record/1007055/files/observation-of-josephson-harmonics-in-tunnel-junctions-final.pdf$$yOpenAccess 001007055 909CO $$ooai:juser.fz-juelich.de:1007055$$popenaire$$popen_access$$pVDB$$pdriver 001007055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ 001007055 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001007055 9141_ $$y2023 001007055 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001007055 920__ $$lyes 001007055 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001007055 980__ $$aconf 001007055 980__ $$aVDB 001007055 980__ $$aI:(DE-Juel1)JSC-20090406 001007055 980__ $$aUNRESTRICTED 001007055 9801_ $$aFullTexts