001007055 001__ 1007055
001007055 005__ 20230516202233.0
001007055 0247_ $$2Handle$$a2128/34357
001007055 037__ $$aFZJ-2023-01953
001007055 041__ $$aEnglish
001007055 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj
001007055 1112_ $$aWACQT Virtual Workshop on Quantum Technology$$cOnline$$d2023-04-26 - 2023-04-27$$wSweden
001007055 245__ $$aObservation of Josephson Harmonics in Tunnel Junctions
001007055 260__ $$c2023
001007055 3367_ $$033$$2EndNote$$aConference Paper
001007055 3367_ $$2DataCite$$aOther
001007055 3367_ $$2BibTeX$$aINPROCEEDINGS
001007055 3367_ $$2DRIVER$$aconferenceObject
001007055 3367_ $$2ORCID$$aLECTURE_SPEECH
001007055 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1684236675_29548$$xInvited
001007055 502__ $$cChalmers University
001007055 520__ $$aThe Josephson effect is the keystone of quantum computing with superconductinghardware. In this talk, I will show that the celebrated sin(phi) Josephsonrelation fails to fully describe the measured energy spectra of many transmonsamples.  While the microscopic theory of Josephson junctions contains higherharmonics sin(2*phi), sin(3*phi), ..., these have generally been considerednegligible in tunnel junctions. However, this assumption is unjustified due tothe non-uniformity of the commonly used AlOx tunnel barriers, which can causehigh-transparency conduction channels. Indeed, by including the Josephsonharmonics in the transmon Hamiltonian, we can greatly improve the agreementbetween computed and measured energy spectra.  The observation of Josephsonharmonics in tunnel junctions prompts a reevaluation of our theoretical modelsfor superconducting hardware.
001007055 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001007055 8564_ $$uhttps://youtu.be/vgyZh5Ff_iE?t=6120
001007055 8564_ $$uhttps://juser.fz-juelich.de/record/1007055/files/observation-of-josephson-harmonics-in-tunnel-junctions-final.pdf$$yOpenAccess
001007055 909CO $$ooai:juser.fz-juelich.de:1007055$$popenaire$$popen_access$$pVDB$$pdriver
001007055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ
001007055 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001007055 9141_ $$y2023
001007055 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007055 920__ $$lyes
001007055 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001007055 980__ $$aconf
001007055 980__ $$aVDB
001007055 980__ $$aI:(DE-Juel1)JSC-20090406
001007055 980__ $$aUNRESTRICTED
001007055 9801_ $$aFullTexts