001     1007057
005     20240711114116.0
024 7 _ |a 10.3390/en16093664
|2 doi
024 7 _ |a 2128/34356
|2 Handle
024 7 _ |a WOS:000986920400001
|2 WOS
037 _ _ |a FZJ-2023-01955
082 _ _ |a 620
100 1 _ |a Ganesh, Vishnu
|0 P:(DE-Juel1)178721
|b 0
|e Corresponding author
|u fzj
245 _ _ |a High heat flux testing of graded W-steel joining concepts for the first wall
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683700235_10365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The realization of the first wall (FW), which is composed of a protective tungsten (W) armor covering the structural steel material, is a critical challenge in the development of future fusion reactors. Due to the different coefficients of thermal expansion (CTE) of W and steel, the direct joining of them results in cyclic thermal stress at their bonding seam during the operation of the fusion reactor. To address this issue, this study benchmarks two joining concepts. The first concept uses an atmospheric plasma sprayed graded interlayer composed of W/steel composites with a varying content of W and steel to gradually change the CTE. The second concept uses a spark plasma sintered graded interlayer. Furthermore, in order to benchmark these concepts, a directly bonded W-steel reference joint as well as a W-steel joint featuring a vanadium interlayer were also tested. These joints were tested under steady-state high heat flux cyclic loading, starting from a heat flux of 1 MW/m2 up to 4.5 MW/m2, with stepwise increments of 0.5 MW/m2. At each heat flux level, 200 thermal cycles were performed. The joints featuring a sintered graded interlayer survived only until 1.5 MW/m2 of loading, while the joint featuring plasma sprayed graded interlayer and V interlayer survived until 3 MW/m2.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dorow-Gerspach, Daniel
|0 P:(DE-Juel1)171293
|b 1
|u fzj
700 1 _ |a Matejicek, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vilemova, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 4
|u fzj
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 5
|u fzj
773 _ _ |a 10.3390/en16093664
|g Vol. 16, no. 9, p. 3664 -
|0 PERI:(DE-600)2437446-5
|n 9
|p 3664
|t Energies
|v 16
|y 2023
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/1007057/files/HHF_test_supplementary_materials_v1%20%281%29.docx
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1007057/files/energies-16-03664-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007057
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178721
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:57:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:57:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:57:23Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21