001007122 001__ 1007122
001007122 005__ 20231027114403.0
001007122 0247_ $$2doi$$a10.3390/cells12091256
001007122 0247_ $$2Handle$$a2128/34374
001007122 0247_ $$2pmid$$a37174659
001007122 0247_ $$2WOS$$aWOS:000987253300001
001007122 037__ $$aFZJ-2023-01956
001007122 041__ $$aEnglish
001007122 082__ $$a570
001007122 1001_ $$0P:(DE-Juel1)167458$$aEsser, Lisann$$b0
001007122 245__ $$aElastomeric Pillar Cages Modulate Actomyosin Contractility of Epithelial Microtissues by Substrate Stiffness and Topography
001007122 260__ $$aBasel$$bMDPI$$c2023
001007122 3367_ $$2DRIVER$$aarticle
001007122 3367_ $$2DataCite$$aOutput Types/Journal article
001007122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683535840_21000
001007122 3367_ $$2BibTeX$$aARTICLE
001007122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007122 3367_ $$00$$2EndNote$$aJournal Article
001007122 520__ $$aCell contractility regulates epithelial tissue geometry development and homeostasis. The underlying mechanobiological regulation circuits are poorly understood and experimentally challenging. We developed an elastomeric pillar cage (EPC) array to quantify cell contractility as a mechanoresponse of epithelial microtissues to substrate stiffness and topography. The spatially confined EPC geometry consisted of 24 circularly arranged slender pillars (1.2 MPa, height: 50 µm; diameter: 10 µm, distance: 5 µm). These high-aspect-ratio pillars were confined at both ends by planar substrates with different stiffness (0.15–1.2 MPa). Analytical modeling and finite elements simulation retrieved cell forces from pillar displacements. For evaluation, highly contractile myofibroblasts and cardiomyocytes were assessed to demonstrate that the EPC device can resolve static and dynamic cellular force modes. Human breast (MCF10A) and skin (HaCaT) cells grew as adherence junction-stabilized 3D microtissues within the EPC geometry. Planar substrate areas triggered the spread of monolayered clusters with substrate stiffness-dependent actin stress fiber (SF)-formation and substantial single-cell actomyosin contractility (150–200 nN). Within the same continuous microtissues, the pillar-ring topography induced the growth of bilayered cell tubes. The low effective pillar stiffness overwrote cellular sensing of the high substrate stiffness and induced SF-lacking roundish cell shapes with extremely low cortical actin tension (11–15 nN). This work introduced a versatile biophysical tool to explore mechanobiological regulation circuits driving low- and high-tensional states during microtissue development and homeostasis. EPC arrays facilitate simultaneously analyzing the impact of planar substrate stiffness and topography on microtissue contractility, hence microtissue geometry and function.
001007122 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001007122 536__ $$0G:(GEPRIS)273723265$$aDFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen $$c273723265$$x1
001007122 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007122 7001_ $$0P:(DE-Juel1)144199$$aSpringer, Ronald$$b1$$ufzj
001007122 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj
001007122 7001_ $$0P:(DE-Juel1)174334$$aLövenich, Lukas$$b3$$ufzj
001007122 7001_ $$0P:(DE-Juel1)169948$$aKonrad, Jens$$b4$$ufzj
001007122 7001_ $$aHampe, Nico$$b5
001007122 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b6
001007122 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b7
001007122 7001_ $$0P:(DE-Juel1)145698$$aNoetzel, Erik$$b8$$eCorresponding author
001007122 773__ $$0PERI:(DE-600)2661518-6$$a10.3390/cells12091256$$gVol. 12, no. 9, p. 1256 -$$n9$$p1256 -$$tCells$$v12$$x2073-4409$$y2023
001007122 8564_ $$uhttps://juser.fz-juelich.de/record/1007122/files/cells-12-01256.pdf$$yOpenAccess
001007122 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001007122 909CO $$ooai:juser.fz-juelich.de:1007122$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144199$$aForschungszentrum Jülich$$b1$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174334$$aForschungszentrum Jülich$$b3$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169948$$aForschungszentrum Jülich$$b4$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b6$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b7$$kFZJ
001007122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145698$$aForschungszentrum Jülich$$b8$$kFZJ
001007122 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001007122 9141_ $$y2023
001007122 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007122 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007122 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007122 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007122 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-30
001007122 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-30
001007122 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-30
001007122 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-30
001007122 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007122 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-30
001007122 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007122 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:15:06Z
001007122 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:15:06Z
001007122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:15:06Z
001007122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELLS-BASEL : 2022$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007122 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELLS-BASEL : 2022$$d2023-10-26
001007122 920__ $$lyes
001007122 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
001007122 9801_ $$aFullTexts
001007122 980__ $$ajournal
001007122 980__ $$aVDB
001007122 980__ $$aUNRESTRICTED
001007122 980__ $$aI:(DE-Juel1)IBI-2-20200312
001007122 980__ $$aAPC