001007138 001__ 1007138
001007138 005__ 20230929112527.0
001007138 0247_ $$2doi$$a10.1103/PhysRevApplied.19.044084
001007138 0247_ $$2ISSN$$a2331-7019
001007138 0247_ $$2ISSN$$a2331-7043
001007138 0247_ $$2Handle$$a2128/34358
001007138 0247_ $$2WOS$$aWOS:000981965200002
001007138 037__ $$aFZJ-2023-01962
001007138 082__ $$a530
001007138 1001_ $$0P:(DE-Juel1)180382$$aSommer, Nils$$b0$$eCorresponding author$$ufzj
001007138 245__ $$aEffect of Oxygen Exchange between Two Oxide Layers of a Memristive Bilayer Valence-Change Memory Cell on the Switching Polarity
001007138 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2023
001007138 3367_ $$2DRIVER$$aarticle
001007138 3367_ $$2DataCite$$aOutput Types/Journal article
001007138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684234075_30738
001007138 3367_ $$2BibTeX$$aARTICLE
001007138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007138 3367_ $$00$$2EndNote$$aJournal Article
001007138 520__ $$aValence-change memory (VCM) cells are promising candidates for future nonvolatile memory devices. A special setup of VCM devices consists of bilayer cells where two thin oxide layers are placed in between two metal electrodes. One oxide layer serves as a tunnel barrier, whereas the second oxide layer is a highly doped conductive semiconductor. Experiments show that an exchange of oxygen between the two layers changes the resistance of the cell. However, the exchange process and how it influences the resistance is not well understood yet. With a drift-diffusion model for electrons and oxygen vacancies, we investigate the movement and exchange of oxygen vacancies and their influence on the band structure as well as on the shape of the tunnel barrier. The simulation results show that a high oxygen-vacancy concentration lowers the height of the tunnel barrier; thus it increases the conductivity of the bilayer cell. The effect of the band lowering is stronger in materials with low permittivity. Hence, two different resistance states evolve if there is an exchange of oxygen between the two oxide layers with different permittivities. Thereby, the switching polarity depends on the relation of the permittivities of the two oxide layers. Furthermore, it is revealed that resistance switching can be induced by the movement of vacancies only inside the conductive oxide, without any oxygen exchange between the layers.
001007138 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001007138 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x1
001007138 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x2
001007138 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007138 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b1
001007138 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b2
001007138 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.19.044084$$gVol. 19, no. 4, p. 044084$$n4$$p044084$$tPhysical review applied$$v19$$x2331-7019$$y2023
001007138 8564_ $$uhttps://juser.fz-juelich.de/record/1007138/files/Invoice_INV_23_MAY_011025.pdf
001007138 8564_ $$uhttps://juser.fz-juelich.de/record/1007138/files/PhysRevApplied.19.044084.pdf$$yOpenAccess
001007138 8767_ $$8INV/23/MAY/011025$$92023-05-16$$a1200193371$$d2023-05-30$$eHybrid-OA$$jZahlung erfolgt
001007138 909CO $$ooai:juser.fz-juelich.de:1007138$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180382$$aForschungszentrum Jülich$$b0$$kFZJ
001007138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b1$$kFZJ
001007138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b2$$kFZJ
001007138 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001007138 9141_ $$y2023
001007138 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007138 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007138 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001007138 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001007138 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001007138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001007138 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001007138 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001007138 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001007138 980__ $$ajournal
001007138 980__ $$aVDB
001007138 980__ $$aI:(DE-Juel1)PGI-7-20110106
001007138 980__ $$aI:(DE-82)080009_20140620
001007138 980__ $$aAPC
001007138 980__ $$aUNRESTRICTED
001007138 9801_ $$aAPC
001007138 9801_ $$aFullTexts