001     1007138
005     20230929112527.0
024 7 _ |a 10.1103/PhysRevApplied.19.044084
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/34358
|2 Handle
024 7 _ |a WOS:000981965200002
|2 WOS
037 _ _ |a FZJ-2023-01962
082 _ _ |a 530
100 1 _ |a Sommer, Nils
|0 P:(DE-Juel1)180382
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Effect of Oxygen Exchange between Two Oxide Layers of a Memristive Bilayer Valence-Change Memory Cell on the Switching Polarity
260 _ _ |a College Park, Md. [u.a.]
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684234075_30738
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Valence-change memory (VCM) cells are promising candidates for future nonvolatile memory devices. A special setup of VCM devices consists of bilayer cells where two thin oxide layers are placed in between two metal electrodes. One oxide layer serves as a tunnel barrier, whereas the second oxide layer is a highly doped conductive semiconductor. Experiments show that an exchange of oxygen between the two layers changes the resistance of the cell. However, the exchange process and how it influences the resistance is not well understood yet. With a drift-diffusion model for electrons and oxygen vacancies, we investigate the movement and exchange of oxygen vacancies and their influence on the band structure as well as on the shape of the tunnel barrier. The simulation results show that a high oxygen-vacancy concentration lowers the height of the tunnel barrier; thus it increases the conductivity of the bilayer cell. The effect of the band lowering is stronger in materials with low permittivity. Hence, two different resistance states evolve if there is an exchange of oxygen between the two oxide layers with different permittivities. Thereby, the switching polarity depends on the relation of the permittivities of the two oxide layers. Furthermore, it is revealed that resistance switching can be induced by the movement of vacancies only inside the conductive oxide, without any oxygen exchange between the layers.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 1
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 2
773 _ _ |a 10.1103/PhysRevApplied.19.044084
|g Vol. 19, no. 4, p. 044084
|0 PERI:(DE-600)2760310-6
|n 4
|p 044084
|t Physical review applied
|v 19
|y 2023
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/1007138/files/Invoice_INV_23_MAY_011025.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1007138/files/PhysRevApplied.19.044084.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007138
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21