001     1007139
005     20230929112527.0
024 7 _ |a 10.1515/itit-2023-0018
|2 doi
024 7 _ |a 0013-5720
|2 ISSN
024 7 _ |a 0179-9738
|2 ISSN
024 7 _ |a 0944-2774
|2 ISSN
024 7 _ |a 1611-2776
|2 ISSN
024 7 _ |a 2196-7032
|2 ISSN
024 7 _ |a 2128/34438
|2 Handle
024 7 _ |a WOS:000976053800001
|2 WOS
037 _ _ |a FZJ-2023-01963
082 _ _ |a 620
100 1 _ |a Bengel, Christopher
|0 P:(DE-Juel1)188159
|b 0
245 _ _ |a Bit slicing approaches for variability aware ReRAM CIM macros
260 _ _ |a Berlin
|c 2023
|b ˜Deœ Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684228149_18883
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Computation-in-Memory accelerators based on resistive switching devices represent a promising approach to realize future information processing systems. These architectures promise orders of magnitudes lower energy consumption for certain tasks, while also achieving higher throughputs than other special purpose hardware such as GPUs, due to their analog computation nature. Due to device variability issues, however, a single resistive switching cell usually does not achieve the resolution required for the considered applications. To overcome this challenge, many of the proposed architectures use an approach called bit slicing, where generally multiple low-resolution components are combined to realize higher resolution blocks. In this paper, we will present an analog accelerator architecture on the circuit level, which can be used to perform Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. The architecture consists of the 1T1R crossbar array, the optimized select circuitry and an ADC. The components are designed to handle the variability of the resistive switching cells, which is verified through our verified and physical compact model. We then use this architecture to compare different bit slicing approaches and discuss their tradeoffs.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dixius, Leon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 2
|u fzj
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 4
|e Corresponding author
773 _ _ |a 10.1515/itit-2023-0018
|g Vol. 0, no. 0
|0 PERI:(DE-600)2028598-X
|n 0
|p 1
|t Information technology
|v 0
|y 2023
|x 0013-5720
856 4 _ |u https://juser.fz-juelich.de/record/1007139/files/Invoice_APC600410706.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1007139/files/Bit-Slicing%20Approaches%20for%20Variability%20Aware%20ReRAM%20CIM%20Macros_final.pdf
909 C O |o oai:juser.fz-juelich.de:1007139
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188159
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IT-INF TECHNOL : 2022
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21