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 20 
Abstract 21 
 22 

Hippocampal-cortical networks play an important role in neurocognitive development. 23 

Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical 24 

structural covariance (SC) networks computed from T1-weighted magnetic resonance images, 25 

we examined how the hippocampus differentiates into subregions during childhood and 26 

adolescence (N=1105, 6-18 years). Surprisingly, In late childhood, the hippocampus mainly 27 

differentiated along the anterior-posterior axis similar to previous reported functional 28 

differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along 29 

the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu 30 

ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions 31 

in terms of related structural co-maturation networks, behavioural and gene profiling suggested 32 

that the hippocampal head is related to higher order functions (e.g. language, theory of mind, 33 

autobiographical memory) in late childhood morphologically co-varying with almost the whole 34 

brain. In early adolescence but not in childhood, posterior subicular SC networks were 35 

associated with action-oriented and reward systems. The findings point to late childhood as an 36 
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important developmental period for hippocampal head morphology and to early adolescence 37 

as a crucial period for hippocampal integration into action- and reward-oriented cognition. The 38 

latter may constitute a developmental feature that conveys increased propensity for addictive 39 

disorders. 40 

 41 

1 Introduction 42 

The hippocampal formation (HF) plays a crucial role in cognitive and emotional development, 43 

including episodic memory, executive function, decision-making and emotion regulation in 44 

children and adolescents (Barch et al., 2019; Keresztes et al., 2017; Lee et al., 2014; Riggins et 45 

al., 2018; Tamnes et al., 2018). Childhood is marked by increased cortical grey matter volume 46 

(Gilmore et al., 2012; Mills et al., 2016) and by the segregation of functional and structural 47 

covariance networks (Woodburn et al., 2021; Zielinski et al., 2010). In addition, there is a shift 48 

from local to global connectivity patterns in children, that becomes functionally relevant with 49 

higher age enhancing modular specialization (Grayson & Fair, 2017). Further refinement of 50 

structural and functional networks continues during late childhood and adolescence to further 51 

support complex cognitive abilities (Khundrakpam et al., 2013; Solé-Padullés et al., 2016).  52 

 53 

The HF is a heterogenous brain region showing subregional differentiation along the medial-54 

lateral and longitudinal axis dividing it into subfields and subregions characterized by distinct 55 

gene transcription profiles, cytoarchitecture, connectivity and integration into behavioral 56 

systems (Amunts et al., 2005; Moser & Moser, 1998; Poppenk et al., 2013; Sekeres et al., 2018; 57 

Strange et al., 2014; Vogel et al., 2020). Hippocampal subregions and subfields were 58 

additionally suggested to follow different trajectories throughout development (Canada et al., 59 

2020; Langnes et al., 2020). These hippocampal regional differences could be expected to go 60 

hand in hand with other brain regions’ developmental trajectories (Douaud et al., 2014; 61 
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Walhovd et al., 2014). Such a question can be investigated by examining hippocampal-whole 62 

brain structural covariance networks.  63 

 64 

Neurobiologically, structural covariance is assumed to capture co-maturation and co-plasticity 65 

processes (Alexander-Bloch et al., 2013) relating to transcriptomic gene expression, and axonal 66 

connectivity (Romero-Garcia et al., 2018; Yee et al., 2018). Furthermore, functional and 67 

structural covariance networks share some topology resulting in a moderate to high 68 

convergence ranging from 30% to 58%  (Goodkind et al., 2015; Paquola et al., 2018; Reid et 69 

al., 2016; Reid et al., 2017; Seeley et al., 2009; Shah et al., 2018; Sui et al., 2014). Hence, 70 

structural covariance, to some extend also reflects functional coupling between brain regions 71 

(Zielinski et al., 2010), and is thus suited to study hippocampal coordinated maturation and 72 

(functional) co-plasticity patterns representing to some extent inherited and environmental 73 

developmental processes.  74 

 75 

A particularly important question in this regard, and given the intrinsic heterogeneity of the 76 

hippocampal formation, is subregional differences in the pattern of whole-brain co-variation 77 

profiles in childhood and adolescence. Investigating the whole HF in a data-driven approach is 78 

essential in this context since subregional differences can be expected to follow either 79 

microstructural properties (typically differentiating hippocampal subfields) or large-scale 80 

functional systems (typically differentiating anterior and posterior subregions). Furthermore, 81 

while hippocampal cortical and subcortical networks play an important role in neurocognitive 82 

development (Alexander et al., 1990; Murty et al., 2016; Shah et al., 2012), they remain poorly 83 

understood, especially in critical transitional phases.  84 

 85 
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Previous investigations of hippocampal structural covariance patterns in healthy adult 86 

populations have revealed a strong segregation between the head and body-tail regions, with a 87 

further cornu ammonis (CA) vs. subiculum-like differentiation within the body-tail region (Ge 88 

et al., 2019; Plachti et al., 2019; Plachti et al., 2020). Notably, this pattern was observed across 89 

distinct adults age groups derived from different study cohorts, including young, middle-age 90 

and older adults and appeared to follow structural connections between the HF and the 91 

neocortex/subcortical regions. However, the question remains open if regional HF structural 92 

covariance patterns are already established in early development or are evident only in older 93 

age groups during adolescence or adulthood.  94 

 95 

To address this question, we examined structural covariance of the HF across different age 96 

groups including late childhood (6-10 years), early (11-14 years) and middle (15-18 years) 97 

adolescence derived from three openly available datasets. Furthermore, we did not a priori 98 

favor any existing hippocampal subdivision pattern (e.g. subfields or subregions) over another, 99 

but instead took the whole HF into consideration. The first objective of this study was hence to 100 

identify in a data-driven way the differentiation pattern in grey matter volume within the HF 101 

based on its whole brain co-maturation profiles. To do so, we used a clustering approach 102 

(Eickhoff et al., 2015; Eickhoff et al., 2018) on the multivariate profiles of hippocampal whole-103 

brain structural covariance patterns. Our second aim was to reveal structural covariance 104 

networks of identified HF subregions, and to characterize these morphological networks with 105 

regards to behavioral systems revealed by meta-activation maps, as well as with regards to gene 106 

profiles, in line with the assumption that structural covariance is related to transcriptomic gene 107 

expression and/or functional coupling supporting behavioral systems. Here, we used brain 108 

activation maps from the NeuroSynth database storing thousands of activation studies 109 



 5 

published in the last decade and gene expression data obtained from the Allen Human Brain 110 

Atlas.   111 

 112 

2 Methods 113 

2.1 Datasets, and age-phenotypical groups  114 

We used three different datasets: Enhanced Nathan Kline Institute-Rockland Sample (eNKI) 115 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/), Child Mind Institute Healthy Brain 116 

Network (CMI-HBN) 117 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/About.html (Alexander et 118 

al., 2017) and Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014) 119 

https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html. From these 120 

datasets, we created three age cohorts corresponding to late childhood (age: 6-10 years, n = 121 

316), early adolescence (age: 11-14 years, n = 328), and middle adolescence (age: 15-18 years, 122 

n = 361). The analyses of these data were approved by the ethical committee of the Heinrich 123 

Heine University Düsseldorf. 124 

 125 

Table 1. Demographics of samples 126 

 N  Mean age (M, SD, age range) Sex (males)% 

Late childhood 316 6-10 years (9.23, 1.16, 6 -10.9) 52.5 

Early adolescence 328 11-14 years (13.00, 1.20, 11 – 14.9) 49.6 

Middle adolescence  361 15-18 years (16.85, 1.17, 15 – 18.9) 49.8 

 127 

2.2 MRI preprocessing and structural covariance computation  128 

In the present study we used T1-weighted anatomical MRI scans of the whole brain assessed 129 

with different scanning parameters (Supplementary Table 1), but all acquired on 3T Scanners. 130 

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/About.html
https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html
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Brain images were preprocessed with SPM12 and the voxel-based processing pipeline 131 

implemented in the CAT12 (version 12.5) toolbox, running in Matlab R2016a. We spatially 132 

normalized images using the DARTEL algorithm to the ICBM-152 template applying both 133 

affine and non-linear transformations. Subsequent preprocessing steps included: bias-field 134 

correction, segmentation into gray, white matter, and cerebrospinal fluid tissues, modulation 135 

for non-linear transformations only and finally smoothing with an isotropic Gaussian kernel 136 

(full-width-half-maximum = 8). Quality of non-smoothed images was ensured by the integrated 137 

Quality assurance (QA) check implemented in CAT12. First, we performed the covariance 138 

analysis implemented in CAT12 correlating grey matter images of the samples to detect 139 

outliers. Images being identified above two standard deviations were visually inspected and 140 

excluded from further analyses if displaying low quality. In addition, we evaluated images on 141 

a rating scale summarizing image quality based on image parameters (e.g. noise contrast ratio) 142 

showing good quality of images (Supplementary Figure 1). To ensure stability, we created 143 

bootstrap samples, which corresponded to the size of the respective dataset (e.g. n = 100 => 144 

100 bootstrap samples) and were subsequently used to calculate the respective structural 145 

covariance matrices. To compute structural covariance, grey matter probabilities of 146 

hippocampal voxels were correlated with whole brain grey matter probabilities using Pearson’s 147 

correlation within each age-specific dataset-sample (i.e. eNKI 6-10 years old). Correlation 148 

values were afterwards z-transformed. 149 

 150 

2.3 Volume of Interest 151 

Hippocampal volume of interest (VOI) was created using the macro-anatomical Harvard-152 

Oxford atlas and cytoarchitectonic maps of the SPM Anatomy Toolbox atlas. For the sake of 153 

consistency and comparability, the same VOI as in previous publications was used (Plachti et 154 

al., 2019; Plachti et al., 2020). 155 
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 156 

2.4 Parcellation 157 

Differentiation patterns within the HF were identified by applying an unsupervised clustering 158 

algorithm (k-means++ in Matlab), which was previously extensively used in the field of brain 159 

parcellation (Arslan et al., 2018; Barnett et al., 2019; Chang et al., 2012; Deen et al., 2010; 160 

Kahnt et al., 2012; Kelly et al., 2012; Kim et al., 2010; Thirion et al., 2014; Zhang et al., 2011). 161 

K-means was applied on the previously computed individual structural covariance patterns 162 

within each age-specific dataset-sample (i.e. eNKI 6-10 years old) representing the correlation 163 

of each hippocampal voxel to all grey matter voxels in the brain excluding the HF itself. Based 164 

on the similarity, or better to say dissimilarity, of structural covariance profiles across HF 165 

voxels, voxels were grouped either in the same or in a different cluster dividing the HF into 2 166 

to 7 subregions (cluster solutions). For each cluster solution, we used 255 iterations and 500 167 

repetitions. In order to identify which differentiation pattern fits the data in an optimal way, we 168 

applied three different criteria: stability of differentiation pattern assessed with split-half cross-169 

validation, similarity between hippocampal voxels and its own cluster assessed with the 170 

silhouette criterion, and consistency of differentiation patterns across age groups. All three 171 

evaluation strategies will be presented in the following paragraphs.  172 

 173 

2.5 Optimal hippocampal differentiation pattern: stability  174 

To assess stability of differentiation patterns, we first divided each parcellation of each dataset-175 

sample into halves 10 000 times (splits) and compared the halves using the adjusted Rand Index 176 

(aRI) to estimate how convergent the two halves were. High stability is expected if both halves 177 

are highly convergent to each other as reflected by a high aRI value. The aRI is a measure for 178 

consistency between two partitions ranging from -1 to +1 being adjusted for chance. Scores of 179 

0 aRI indicate that the partitions are independent from each other, hence random, whereas a 180 
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score of 1 indicates that the partitions are identical. Negative scores indicate that the 181 

differentiation patterns are less than expected from a random partition meaning that two 182 

partitions might be complementary. In the next step, we quantified statistically with an 183 

ANOVA, which partition ranging from 2 to 7 subregions represents the most stable 184 

differentiation pattern.  185 

 186 

2.6 Optimal hippocampal differentiation pattern: consistency  187 

In addition to the stability criterion, we also tested for consistency of HF differentiation 188 

patterns. Doing so, we followed two different approaches, namely consistency of individual 189 

hippocampal voxels with regards to the subregion it was assigned to, and consistency of whole 190 

differentiation patterns across dataset-age samples.  191 

 192 

For the first case, we used the silhouette score to assess how well the separation of hippocampal 193 

voxels was performed across cluster solutions. Silhouette scores can range from -1 to +1, with 194 

higher scores indicating for each hippocampal voxel that the voxel matched well to its own 195 

subregion/cluster (i.e. cohesion) but poorly with a neighboring subregion (i.e. separation). 196 

Silhouette plots were used to visualize the degree of coherence for each HF voxel.  197 

 198 

For the second case, we compared all differentiation patterns obtained from the dataset-age 199 

samples with each other as well as to the young-adults differentiation pattern previously 200 

obtained from our work (Plachti et al., 2020), using the aRI. This procedure ensured to evaluate 201 

which differentiation pattern captured more likely intrinsic properties of hippocampal 202 

structural covariance, which are genuine and therefore reoccurring across different groups 203 

mirroring high similarity of differentiation patterns across dataset-age samples.   204 

 205 
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2.7 Age-specific differentiation patterns across datasets  206 

Hippocampal parcellation was performed within the three age groups (6-10, 11-14, and 15-18 207 

years of age) separately for each dataset sample (e.g. PNC 6-10 years; PNC 11-14 years, eNKI 208 

6-10 years etc.). Data was not merged at the step of clustering. This was done to diminish the 209 

influence of dataset specific structured noise on parcellations and to maximize our ability to 210 

identify differentiation patterns reflecting developmental neurobiological mechanisms during 211 

late childhood and adolescence. Therefore, we first applied the clustering approach described 212 

above on structural covariance patterns of hippocampal voxels for each individual age-related 213 

dataset sample (e.g. PNC 6-10 years, eNKI 6-10 years). After clustering HF voxels for each 214 

age group and dataset, age group specific HF differentiation patterns were merged across 215 

datasets (e.g. pooling CMI-HBN 6-10 years, eNKI 6-10 years and PNC 6-10 years) by 216 

concatenating the dataset-age specific solution matrices. Subsequently, we applied 217 

bootstrapping (10 000 resampling) on the concatenated and ‘merged’ solution matrices to 218 

enhance further stability of differentiation patterns. This procedure provided robust age group 219 

specific HF differentiation patterns. 220 

 221 

2.8 Underlying structural covariance networks  222 

To reveal whole-brain structural covariance patterns for each of the identified HF subregions, 223 

we performed a general linear model (GLM) implemented in SPM at the voxel level. As the 224 

age samples from the different datasets had to be pooled together for this analysis, we 225 

preliminary harmonized grey matter probabilities across datasets applying the ComBat 226 

algorithm (Fortin et al., 2018; Fortin et al., 2017). Using GLM, we tested the linear relationship 227 

between each grey matter voxel in the brain with the averaged grey matter probabilities of 228 

hippocampal subregions of the age-specific hippocampal model identified in the previous step. 229 

 230 
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We used t-contrasts, comparing the association pattern of one subregion against the other 231 

subregions within the HF in order to estimate the unique structural covariance network of each 232 

specific hippocampal subregion. Associated structural covariance networks remained 233 

unthresholded (T >= 1, P < 0.001) since the clustering approach was performed on a full pattern 234 

of covariation without any restrictions. However, we also report results at the corrected level 235 

for multiple comparisons using the family wise error (FWE) rate (T > 4.48, P < 0.05) 236 

(Supplementary Figure 7).  237 

 238 

2.9 Subregions’ covariance networks and behavioral associations 239 

After having identified the associated structural covariance networks underlying hippocampal 240 

differentiation patterns in each age cohort, we characterized those networks with regards to 241 

behavioral functions using NeuroSynth database (https://neurosynth.org/). We used the 242 

cognitive decoding tool containing more than 1300 terms, which were obtained from published 243 

functional activation studies (Yarkoni et al., 2011). Our primarily aim was not to give a detailed 244 

behavioral description of structural covariance networks but to get a broad overview of the 245 

behavioral concepts most associated with these networks (Hansen et al., 2021).  246 

 247 

NeuroSynth provides for specific behavioral concepts such as ‘memory’ a meta-analytical map 248 

containing the most frequent associated voxels across activation studies, representing how 249 

often voxel coordinates and specific (behavioral) terms have been published together. 250 

Therefore, we compared the obtained unthresholded structural covariance patterns with the 251 

maps archived in NeuroSynth using Pearson’s correlation. We included only correlations above 252 

r >= 0.1 and excluded non-behavior related terms (e.g. ‘hippocampus’, ‘temporal’, ‘dementia’) 253 

and summarized terms related to one category into a summary term (e.i. ‘emotion’ included 254 

‘affect’, ‘happy’, ‘fear’). Depending on the spatial extent of the structural covariance networks, 255 

https://neurosynth.org/
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the number of behavioral terms may differ from network to network. Notably, behavioral 256 

descriptions were interpreted qualitatively and not quantitively.  257 

 258 

2.10 Gene fingerprints of structural covariance networks  259 

In addition to the behavioral characterization of associated structural covariance networks, we 260 

also characterized those structural networks with regards to their genetic profile. To do so, we 261 

used the gene decoding tool implemented in NeuroSynth and NeuroVault (Gorgolewski et al., 262 

2015), which is based on the Allen Human Brain Atlas (http://human.brain-map.org/) 263 

microarray dataset containing human genes. Identically to the behavioral characterization, we 264 

used the unthresholded statistical maps obtained, which were hence compared with gene 265 

expression patterns (Gorgolewski KJ, 2014). Concretely, Neurovault uses mixed-effect models 266 

to estimate associations between our statistical covariance map and the ~ 40 000 genes obtained 267 

from six donated brains of the Allen Brain Institute, revealing genes that are associated with 268 

our map. In the present study, we filtered only genes related to five different categories of 269 

interest, namely, brain, hormones, neurons, synapses and hippocampus. We only reported the 270 

max. 10 genes, which were positively correlated with our map, FDR P < 0.05 corrected and 271 

explained more than 5 % of the variance. On the axis of the resulting spiderplots, we show how 272 

much variance (%) was explained.  273 

 274 

3 Results 275 

3.1 Optimal division patterns in childhood and adolescence  276 

 277 

3.1.1 Stability of hippocampal differentiation patterns  278 

Optimal hippocampal differentiation patterns dividing the HF into two to seven subregions 279 

were identified by stability measures across 10 000 splits (cross-validation) estimated with the 280 

http://human.brain-map.org/
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aRI. We performed a 6 (differentiation patterns: from 2 to 7) x 3 (age group: late childhood, 281 

early and adolescence) ANOVA with the aRI as dependent variable. Our results showed that 282 

main and the interaction effects were significant for the left HF: differentiation patterns 283 

F(5,419982) = 16226.12, P < 0.001, age group F(2,419982) = 14504.15, P < 0.001, 284 

differentiation pattern x age group F(10,419982) = 1712.32, P < 0.001. All six differentiation 285 

patterns showed high stability dividing the HF into 2 subregions (M = 0.96), 3 (M = 0.95), 4 286 

(M= 0.92), 5 (M = 0.91), 6 (M = 0.91) and 7 (M = 0.92), with all comparisons being significant 287 

(P < 0.001) as revealed by post-hoc analyses correcting for multiple comparisons according to 288 

Tukey-Kramer. However, especially the simpler parcellation patterns dividing the HF into two, 289 

three and four subregions, seemed to be more stable compared to higher parcellation schemas 290 

(Fig. 1a). In addition, stability of differentiation patterns was dependent on age group as 291 

summarized in Fig. 1a. Results for right HF are shown in Supplementary Figure 3.  292 

Thus, our first exploration of stability of hippocampal differentiation patterns suggested that 293 

simpler patterns of two, three and four subregions represented hippocampal-cortical 294 

covariation patterns in an optimal way, with patterns of two and three subregions showing the 295 

most stable divisions. Based on this initial examination of the data, we then focused on 296 

subdivision models of two, three, and four subregions as representing reliable models across 297 

age groups, and we then examined further criteria to identify the optimal partition model among 298 

those levels.  299 

 300 

3.1.2 Consistency within hippocampal differentiation patterns  301 

After examining the stability of age-specific hippocampal partitions, we further evaluated their 302 

consistency. To do so, we used the silhouette criterion summarizing how similar hippocampal 303 

voxels were to their own assigned subregion compared to a neighboring subregion. Statistical 304 

differences were evaluated with a 6 (differentiation pattern: 2-7) x 3 (age group: late childhood, 305 
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early adolescence, middle adolescence) ANOVA using the silhouette measure as the dependent 306 

variable. All main and interaction effects were significant: differentiation pattern F(5,14940) = 307 

376.68 , P < 0.001, age group F(2,14940) = 32.34, P < 0.001 and the interaction between 308 

differentiation pattern x age group F(10,14940) = 10.93, P < 0.001 (Fig. 1b). Post-hoc 309 

comparisons corrected for multiple comparisons (Tukey-Kramer) revealed that all 310 

differentiation patterns differed significantly from each other (P < 0.001) besides three 311 

comparisons: differentiation pattern of 4 subregions compared to 5, 4 compared to 6, and 5 312 

compared to 6 (P > 0.1). Results for the right HF are summarized in Supplementary Results 3. 313 

Overall, the similarity measure confirmed again that differentiation patterns of two and three 314 

subregions capture optimally structural covariance patterns within the HS. 315 

 316 

3.1.3 Consistency of differentiation patterns across age groups  317 

To further support our decision that robust and highly consistent differentiation patterns of two 318 

and three subregions were driven by intrinsic properties of structural covariance patterns rather 319 

than by possible dataset specific (e.g. noise) properties, we tested the consistency of 320 

differentiation patterns across dataset-age groups, again measured with the aRI (Fig. 1c). The 321 

generally high aRI across the separate dataset-age groups for the differentiation pattern of two 322 

subregions suggested a global and robust differentiation independent of dataset or age group. 323 

The differentiation pattern of three subregions also displayed a stable pattern of high similarity  324 

across datasets and age groups but with some exceptions (e.g. CMI HBN 6-10 years, PNC 6-325 

10 years, eNKI 15-18 years) probably capturing different age-related stages of hippocampal 326 

structural covariation.  327 

 328 

Overall patterns of consistency of these hippocampal patterns seemed to follow a transition 329 

from childhood to adolescence. Thus, our examination of hippocampal consistency across 330 
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dataset-age groups suggested to focus on hippocampal pattern of three subregions, since this 331 

pattern was most stable and consistent, but also most likely the one representing optimally age-332 

related differences of hippocampal structural covariance. Hippocampal consistency measures 333 

for higher levels of differentiation (5-7 subregions) are summarized in Supplementary Figure 334 

2.  335 

 336 

Overall, our data-driven examination of hippocampal differentiation patterns suggested that 337 

parcellating the HF into three subregions results in stable and highly consistent separation of 338 

voxels within the HF. On top, this pattern of differentiation was also consistent across age-339 

specific samples and in line with the pattern previously evidenced in young adults (Plachti et 340 

al., 2019; Plachti et al., 2020). All further analyses were hence based on a three-subregion 341 

differentiation pattern for all age cohorts.  342 

 343 

3.2 Age related hippocampal differentiation patterns  344 

To obtain general, robust and age specific hippocampal differentiation patterns, we merged the 345 

previously identified dataset specific age group solutions across datasets to generate a 346 

consensus partition model of three subregions for each of the three age groups: late childhood, 347 

early adolescence, and middle adolescence. To do so, we merged the 3-clusters assignments 348 

matrices while applying bootstrapping to further enhance stability of the differentiation patterns 349 

for each age group separately.  350 

 351 

The resulting age specific hippocampal patterns for all three age groups emphasized a division 352 

along the anterior-posterior and medial-lateral dimension, dividing the HF into an anterior 353 

(head), posterior lateral (body-tail CA) and posterior medial (body-tail subiculum) subregion. 354 

Strikingly, this pattern was mainly evident in early and middle adolescence groups, while in 355 



 15 

late childhood (Fig. 1D), subregions were mainly differentiated along the anterior-posterior 356 

dimension with an anterior (head), middle (body) and posterior (tail) subregions. Of note, in 357 

the late childhood group, the posterior (green) subregion appeared to extend into the anterior-358 

lateral direction approaching the hippocampal head. Furthermore, the differentiation pattern of 359 

early and middle adolescence resembled the hippocampal division previously observed in 360 

young adults (Ge et al., 2019; Plachti et al., 2020). In order to quantify these differences and 361 

resemblances, we used the aRI index and compared the age specific hippocampus-models with 362 

each other and to the young adults’ hippocampal pattern (20-35 years and 35-55 years old 363 

obtained from (Plachti et al., 2020)) at different levels of differentiation (Fig. 1E). As expected, 364 

the highest similarity was observed for pattern of 3 subregions for the early and middle 365 

adolescence groups and both groups were more similar to young adults. The comparison 366 

between late childhood and early adolescence also displayed high convergence in hippocampal 367 

patterns of 3 subregions (~ 0.6 aRI) indicating high relatedness. High similarity was found 368 

between all age groups for the division level of 2 subregions, again highlighting that a head vs. 369 

body-tail subregion is a constant feature of hippocampal differentiation across all age groups. 370 

Findings for the right HF are represented in the Supplementary Figure 3.  371 

 372 
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 373 
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Figure 1. Stability and consistency of differentiation patterns measured with the aRI or the 374 

silhouette scores (A, B). Basic divisions of 2 and 3 subregions were more stable and consistent 375 

within hippocampal voxels and across age groups. A division into 3 subregions appeared 376 

optimal to study age related differences since it was a robust and consistent subdivision, which 377 

in addition captured age related differences across groups (C, D, E). Adults’ hippocampal 378 

differentiation patterns in (D) were previously obtained in a former study (Plachti et al., 2020).  379 

 380 

3.3 Whole brain structural covariance patterns of each subregion  381 

After delineating robust partitions of the HF based on the individual voxels’ structural 382 

covariance profiles, we examined the underlying structural covariance networks that guided 383 

the differentiation among hippocampal voxels in each age group. For each age group, the 384 

associated structural covariance networks for the left hippocampal differentiation pattern are 385 

summarized in Fig. 2, and in the Supplementary Figure 6 for the right HF and for both 386 

hippocampi after FWE correction.  387 

 388 

In late childhood, the head (yellow) subregion co-varied with almost the whole grey matter 389 

volume of the brain, with an emphasis on fronto-temporal brain regions including middle, 390 

superior frontal, orbital cortex, and (para)cingulate gyrus, temporal pole, middle temporal and 391 

inferior temporal gyrus. However, covariation was also observed with the insular cortex, 392 

thalamus, caudate, angular gyrus, lateral occipital cortex, and (pre)cuneous cortex.  393 

 394 

In early adolescence the whole brain structural covariance network of the hippocampal head 395 

subregion was less in spatial extent but kept its core associations especially with frontal regions 396 

such as frontal pole, frontal orbital cortex, subcallosal cortex, inferior frontal gyrus, frontal 397 

medial cortex, precentral gyrus, paracingulate gyrus, but also with insular cortex, temporal 398 
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pole, temporal fusiform cortex, central opercular cortex, precuneous cortex, intracalcarine 399 

cortex and amygdala. In middle adolescence, this network was again smaller in spatial extent 400 

and included amygdala, temporal fusiform cortex, inferior temporal gyrus, temporal pole, 401 

insular cortex, cingulate gyrus, lateral occipital cortex, intracalcarine cortex, central opercular 402 

cortex, superior frontal gyrus and precentral gyrus.  403 

 404 

In late childhood, the structural covariance network of the tail (green) hippocampal subregion 405 

was dominated by associations with posterior brain regions such as posterior cingulate gyrus, 406 

precuneous cortex, cuneal cortex, supracalcarine and intracalcarine cortex, lingual gyrus, 407 

occipital fusiform gyrus, occipital pole, but also showed associations with frontal and 408 

subcortical brain regions including the putamen, thalamus, insular cortex, middle frontal gyrus, 409 

frontal pole, frontal orbital cortex and inferior frontal gyrus. This pattern of structural 410 

covariance was also evident, although smaller in spatial extent, in early adolescence and 411 

covered posterior regions of the lingual gyrus, precuneous cortex, cuneal cortex, lateral 412 

occipital cortex, occipital pole, intracalcarine cortex and the posterior division of the inferior 413 

temporal gyrus. However, some frontal brain regions were also associated with the 414 

hippocampal tail subregions including the frontal pole, inferior frontal gyrus (pars opercularis, 415 

pars triangularis), frontal orbital cortex, frontal operculum cortex. In middle adolescence, 416 

however, except for the frontal pole, frontal associations were not observed, and the structural 417 

covariance network included intracalcarine cortex, occipital pole, caudate, parahippocampal 418 

gyrus, and cingulate gyrus (posterior division).  419 

 420 

Underlying structural covariance network of the body (blue) hippocampal subregion in late 421 

childhood revealed associations with the cerebellum IX, I-IV, Crus I and II, precentral and 422 

postcentral gyrus, paracingulate gyrus and superior temporal gyrus (posterior division). In early 423 
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adolescence the spatial extent of the whole brain structural covariance network of the medial 424 

body-tail (blue) subregion was greatly enlarged and showed a scattered association pattern with 425 

the putamen, caudate, thalamus, accumbens, lingual gyrus, cerebellum V, I-IV, VI, Crus I, 426 

inferior temporal gyrus, middle temporal gyrus (temporooccipital and posterior parts), lateral 427 

occipital cortex, parietal operculum cortex, supramarginal gyrus, precentral and postcentral 428 

gyrus, cingulate gyrus, precuneous cortex and middle and superior frontal gyrus. In the group 429 

of middle adolescence, the associated structural covariance network of the medial body-tail 430 

(blue) subregion remained but additionally included frontal associations such as with frontal 431 

orbital cortex, subcallosal cortex, frontal pole, paracingulate gyrus and middle frontal gyrus.  432 

 433 

In sum, our results suggested that the anterior (yellow) subregion is generally associated with 434 

frontal brain regions, although in late childhood it covaried with almost the whole brain. In 435 

contrast, the medial body-tail (blue) subregion was primarily associated with subcortical and 436 

motor-related brain regions, whereas the body-tail (green) subregion covaried with posterior 437 

brain regions connecting the occipital with parietal and subcortical brain regions (especially in 438 

late childhood).  439 

 440 

3.4 Behavioral characterization of structural covariance networks  441 

To better understand how the structural covariance networks relate to behavioral systems, we 442 

performed behavioral decoding of each identified whole-brain structural covariance pattern 443 

using NeuroSynth. Results for the right HF are presented in the Supplementary Figure 6.  444 

In late childhood, the structural covariance pattern of the head (yellow) subregion was 445 

particularly spatially expanded and was accordingly associated with a variety of behavioral 446 

terms such as perception (viewing, olfactory), emotion ((un)pleasant, valence) and cognition 447 

(memory, theory of mind) (Fig. 2). The behavioral characterization of the hippocampal head 448 
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subregion’s networks did not differ across the age groups although the patterns differed from 449 

each other in spatial extent.  In contrast, the structural covariance network of the lateral body-450 

tail (green) subregion was mainly related to episodic memory and retrieval in late childhood.  451 

 452 

The most important difference in behavioral characterization was found for the early 453 

adolescence group, whose structural covariance network of the medial body-tail (blue) 454 

subregion expanded in size and in behavioral terms as well. Accordingly, the structural 455 

covariance network was linked to terms pertaining to the motivation system (e.g., reward, 456 

incentive) and motor related behavioral terms (e.g. execution, movement), which was not 457 

evident for late childhood. In the group of middle adolescence, the medial body-tail (blue) 458 

subregion’s network was also associated with motor related behavioral terms but not with 459 

motivation, while associations with terms pertaining to cognitive function such as language 460 

and reading were found again. Finally, the behavioral concepts associated with the network of 461 

the lateral body-tail (green) subregion remained elusive across age groups, suggesting a 462 

physiological network rather than a specific behavioral system.  463 

  464 

 465 
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 466 

Figure 2. Structural covariance networks of left hippocampal subregions and their behavioral 467 
characterization. Hippocampal subregions’ associated unthresholded structural covariance 468 
networks (T>=1) are displayed for each of the investigated age group in the upper panel of the 469 
figure, whereas behavioral characterization of the structural covariance networks, performed 470 
with Neurosynth (r>=0.1), are summarized in the lower panel of the figure. In late childhood, 471 
anterior hippocampal subregions covaried with almost the whole brain, whereas posterior 472 
subregions’ structural covariance networks spatially expanded in middle adolescence.  This 473 
pattern of results was also visible in networks’ behavioral associations. In late childhood, 474 
anterior hippocampus seems to covary with brain regions, involved in higher cognitive function 475 
including language, theory of mind, but also emotion and perception. In early adolescence, 476 
medial body-tail (blue) hippocampal subregion was linked to motivational and motor systems.  477 
 478 
 479 
3.5 Gene expression profiles of structural covariance networks  480 
As structural covariance networks reflect not only functional interaction for behavioral 481 

functions, but also transcriptomic gene expression, we here also further characterized the 482 

underlying structural networks with regards to genes profiles.  As summarized in Fig. 3, by 483 

using the Allen Human Brain Atlas microarray dataset, each hippocampal subregion’s 484 

covariation networks showed a unique gene profile.  485 

 486 
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The network of the head subregion (yellow) was likely associated with processes responsible 487 

for maintaining automatic physiological responses (e.g., NTRS1~ blood pressure and sugar, 488 

body temperature, NPY~ pain perception, MCHR2 and THRA ~ thyroid and melanin hormone), 489 

supporting its behavioral profile of the head subregion associated with emotions (e.g., arousal, 490 

aversive), perception (e.g. salient) and reactivity and regulation processes (Fig. 2). The gene 491 

profile of the lateral body-tail subregion’s (green) network appeared to be involved among 492 

others in the endocrine stress reaction (e.g., CRH~ HPA axis, NLN~ pain, blood pressure, 493 

reproduction, glucose metabolism), but also in memory and learning processes especially in 494 

terms of synapse formation, guidance and neurogenesis (e.g., LRRTM2, NFASC, NAV1, 495 

SERPINI1, NLGN4X). However, the lateral body-tail (green) subregion’s network was 496 

relatively less characterized in terms of common human behavior functions, which again may 497 

suggest an involvement in physiological rather than observable behavioral processes. Finally, 498 

the gene profile of the structural covariance network of the medial body-tail subregion (blue) 499 

seemed to be related to an action-oriented and partly motivational network as represented by 500 

the associated genes (e.g., THRSP~ attention, NEUROG2 and NTS ~ dopaminergic pathway, 501 

NPFF~ reward, pain and SLC22A3 ~ incentive). This gene profile is particularly consistent 502 

with the behavioral characterization of early adolescence with a behavior related to 503 

‘motivation’, ‘reward’, ‘incentive’, and ‘gain’. The gene profiles for the right HF are depicted 504 

in Supplementary Figure 10.   505 

 506 

 507 

 508 

 509 
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 510 

Figure 3. Gene mapping of structural covariance networks associated with the left 511 
hippocampal differentiation pattern. Gene profiling of the unthresholded structural covariance 512 
networks was performed with Neurosynth and NeuroVault based on the Allen Human Brain 513 
Atlas. A maximum of 10 genes, which were positively correlated with the networks, FDR P < 514 
0.05 corrected and explained more than 5% of the variance, were reported. In early adolescence 515 
structural covariance network of the medial body-tail (blue) hippocampal subregion was also 516 
genetically linked to motivation and reward systems. In late childhood, hippocampal tail 517 
(green) subregion is probably related to axonal and synaptic formation.   518 
 519 
 520 

4 Discussion 521 

 522 

In the present study, we explored hippocampal differentiation patterns based on whole-brain 523 

structural covariance patterns in children and adolescents. Our findings showed that the HF is 524 

optimally and robustly differentiated into three stable subregions across childhood and 525 

adolescence. Overall, across all age groups, the hippocampal head emerged as a distinct 526 

subregion with a specific structural covariance’s profile. However, the further medial-lateral 527 

subdivision of the body-tail corresponding to hippocampal subfields was only expressed in 528 

early adolescence. The latter finding suggests that the typical CA-subiculum differentiation 529 
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previously reported in adults and previously evidenced using structural covariance (Ge et al., 530 

2019; Plachti et al., 2019; Plachti et al., 2020) seemed to appear at the stage of adolescence.  531 

 532 

Further differences between age groups were also observed when examining the structural 533 

covariance networks of each identified hippocampal subregion within each age group. 534 

Strikingly, the hippocampal head with its extended structural covariance network (including 535 

frontal, parietal and temporal brain regions) appeared to hold a core role in brain structural 536 

development in late childhood. The behavioral characterization of this brain spatial pattern 537 

revealed associations with a wide range of behavioral terms pertaining to emotions, perception, 538 

and higher order cognition, a pattern of associations which was furthermore supported by its 539 

gene mapping profile including NTSR1 (e.g., blood pressure and sugar, body temperature), 540 

NPY (pain perception), MCHR2 and THRB (e.g. thyroid and melanin hormone). Altogether 541 

these results further reinforce the hypothesis according to which the hippocampal head is 542 

involved in a self-oriented behavioral system (Plachti et al., 2019; Zheng et al., 2021) of 543 

reactivity and regulation. Importantly, the current study emphasized that this involvement is 544 

already apparent in late childhood.   545 

 546 

In late childhood, the differentiation pattern of the HF was evident mainly along the anterior-547 

posterior dimension, dividing it into an anterior (head), middle (body) and posterior (tail) 548 

subregion. When examining the underlying structural covariance networks three observations 549 

were noteworthy. First, both the hippocampal anterior head (yellow) and posterior tail (green), 550 

covaried with parietal and occipital cortex in late childhood, but not in adolescents. This finding 551 

may imply that structural covariance networks are not yet well separated in childhood, but only 552 

start to differentiate with age in line with the segregation of hippocampal resting-state 553 

functional connectivity (Blankenship et al., 2017). Functional connectivity investigation have 554 
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indeed revealed that the connectivity patterns of the anterior HF to posterior brain regions, such 555 

as sensorimotor and visual cortices, diminish in adulthood (Tang et al., 2020). Further 556 

complementing these findings, our study suggests that functional interaction of the 557 

hippocampal head with posterior regions could already decrease (in line with anterior-posterior 558 

functional segregation) at the stage of adolescence.  559 

 560 

Secondly, the structural covariance network of the anterior hippocampal subregion revealed a 561 

morphological co-variation pattern with almost the whole brain, but especially with temporal, 562 

(medial) frontal and subcortical brain regions. This highly extended network of the anterior HF 563 

contrasted with the limited covariance patterns of body and tail hippocampal subregions, 564 

emphasizing that the anterior but not the posterior HF is coupled with almost the whole-brain 565 

due to co-maturation, co-development or co-plasticity in late childhood, highlighting its crucial 566 

role in development. This observation may be related to the earlier evolvement of the anterior 567 

HF compared to posterior HF, as reported in a longitudinal sample of 4-8-year-old (Canada et 568 

al., 2021) and in 6-10 year old children and assessed with shape analysis (Lin et al., 2013). 569 

Though specific investigations would be needed to identify the neurobiological factors playing 570 

a role in the brain morphological covariance of the hippocampal head in childhood, the neuron 571 

production in the dentate gyrus (Lavenex & Banta Lavenex, 2013) could be proposed as an 572 

hypothesis. It indeed represents the origin of neurogenesis in the anterior HF (Li et al., 2013), 573 

hence possibly boosting co-development.   574 

 575 

Thirdly, the behavioral profiling of anterior hippocampal subregion’s structural covariance 576 

network indicated an involvement in several behavioral systems, based on the associated meta-577 

analytical maps, such as perception (e.g., olfactory), emotions, and higher-order cognition (e.g., 578 

language, theory of mind, semantic and autobiographical memory) in line with the broad spatial 579 
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extent of structural covariance. In agreement with our structural covariance’s findings, a recent 580 

study has highlighted that the grey matter volume of the anterior, but not the posterior HF, 581 

relates to memory and language abilities in early childhood and importantly, was correlated 582 

with environmental factors (Decker et al., 2020). Along the same line, volumetric growth of 583 

the anterior, but not posterior HF was identified to be relevant for item-item memory 584 

improvements in middle childhood and adolescence (Lee et al., 2020). This again confirms our 585 

own observation that the anterior HF co-develops with almost the whole brain and therefore is 586 

involved in many behavioral systems in the first periods of life, including multiple functional 587 

domains such as language, memory, emotion and perception.  588 

 589 

These considerations lead us to speculate that late childhood is a time window of high plasticity 590 

and vulnerability for the anterior HF, which again may have crucial implications and 591 

consequences for adolescence, a time, where psychiatric mood disorders emerge (Paus et al., 592 

2008). Critical life periods were already identified in comparative studies in rodents, monkeys 593 

and birds. Functional deficits such as spatial learning are impossible to rehabilitate if adverse 594 

environmental factors occur (Lavenex & Banta Lavenex, 2013). This is likely comparable to 595 

the reported effects of a deprived environment on anterior HF development and cognitive 596 

abilities during childhood identified by Decker et al. (2020). 597 

 598 

In late childhood the posterior tail subregion showed an expansion into the anterior-lateral 599 

direction, pointing to the evolvement of a pattern along the medial-lateral dimension as 600 

evidenced in healthy adults (Plachti et al., 2020). This could again suggest that late childhood 601 

is a transitional phase and that the organization of the HF, although still showing mainly an 602 

anterior-posterior differentiation, is already on the way to adopting the medial-lateral 603 

differentiation of adolescents. Indeed, previous reports showed that the posterior HF comes 604 
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into the front during late childhood and adolescence by increasing in volume with age (Lee et 605 

al., 2020; Lynch et al., 2019), while the anterior HF decreased with age in a sample of 4-25 606 

years old participants (Gogtay et al., 2006). Considering the underlying structural covariance 607 

network of the posterior tail (green) subregion, we observed an expansion primarily to posterior 608 

brain regions, with the gene mapping profiling suggesting an involvement in synaptic 609 

formation, axon guidance, late neurogenesis, remodeling of synapses and the exocytosis of 610 

synaptic vesicles (e.g., NFASC, NAV1, SERPINI1, NLGN4X and SYT6). Thus, axonal and 611 

synaptic connections of the posterior HF to important mnemonic circuits (via the fornix) may 612 

appear in late childhood, explaining its increase in volume around the age of 8 and 12 years 613 

(Supplementary Figure 5) and its involvement in episodic memory and retrieval, and the 614 

association with the CDH2 gene (learning and memory). Based on the gene mapping results 615 

we assumed that processes related to synaptic stabilization first suggested by (Changeux & 616 

Danchin, 1976) and myelination (Arnold & Trojanowski, 1996; Benes, 1989) are especially 617 

evident in late childhood and continue to refine during early and middle adolescence. Hence, 618 

the emergence of the medial-lateral differentiation in the posterior body-tail HF may represent 619 

on the one hand the cytoarchitectonic differentiation into subiculum and CA (Amunts et al., 620 

2005), and, in a similar vein, co-evolving pattern with white matter connections (Maller et al., 621 

2019), since macro-structural grey and microstructural white matter tend to covary in a 622 

coordinated manner during development (Moura et al., 2017). Therefore, we argue that the 623 

period of late childhood and early adolescence is a pivotal transition phase for structural 624 

covariance networks (Vijayakumar et al., 2021) of the posterior HF. In this period of time major 625 

connections between the HF and posterior brain regions (Meissner et al., 2021), as well as to 626 

subcortical and limbic regions via fornix and superior corona radiata (Benear et al., 2020; 627 

Jacobus et al., 2013) are strengthened, probably through processes of increased synaptogenesis 628 
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as suggested by our gene profiling, as well as myelination and co-maturation patterns as 629 

reported in the literature.  630 

 631 

It is widely accepted that adolescence is a developmental transition period to adulthood, which 632 

is marked by higher vulnerability to addictive behavior such as nicotine, alcohol, and drugs 633 

(Geier, 2013; R. Andrew Chambers et al., 2003), but is also characterized by an increase in 634 

risky behavior (Blakemore & Robbins, 2012). This disposition was explained by changes in 635 

reward behavior and in neural motivation circuitry (Doremus-Fitzwater & Spear, 2016; Telzer, 636 

2016), resulting in the inability to control impulses, postpone gratification and maintain goal-637 

directed behavior (Geier, 2013).    638 

 639 

Interestingly, our findings on structural covariance in this age range could be relevant to this 640 

context, as the hippocampal medial body-tail (blue) comparable to the subiculum showed 641 

spatial covariance patterns with motor- and reward related brain regions. Associations were 642 

found between hippocampal medial body-tail and nucleus accumbens, the basal ganglia, 643 

ventral striatum, and cerebellum, which is related to learning of motoric output and sensory 644 

expectations (Schultz, 2016; Shadmehr et al., 2010; van Duijvenvoorde et al., 2016; Wolpert 645 

et al., 2011). The HF was already identified in previous studies as one of the regions belonging 646 

to the ventral striatum network associated with reward behavior (Haber & Knutson, 2010) and 647 

decision making (Ernst et al., 2005). The structural covariance network of the medial body-tail 648 

(blue) HF was related to ‘reward’, ‘incentive’, ‘gain’, ‘monetary’ but also to ‘movement’, 649 

‘finger’, ‘execution’, indicating an involvement in a reward-oriented action system. This 650 

profile was further supported by gene mapping highlighting the involvement of SLC22A3 and 651 

NTS. These genes are indeed assumed to be part of the dopamine pathways, locomotor activity 652 

and drug-seeking behavior (https://www.genecards.org/). It has been suggested that 653 
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adolescents have a higher sensitivity for reward (Galvan et al., 2006) shown in fMRI studies 654 

with higher activity of reward circuitry to monetary reward (Ernst et al., 2005) and in 655 

reinforcement learning (Davidow et al., 2016). Hippocampo-cortical connectivity may play a 656 

role in the development of these reward-oriented behavior as, increased functional connectivity 657 

between the HF and ventral striatum predicting substance abuse has been shown in adolescents 658 

(Huntley et al., 2020).  659 

 660 

Our finding of the medial body-tail (blue) HF interacting with reward and motivational 661 

networks especially in early adolescence is also in accordance with previous longitudinal 662 

findings of reward sensitivity increase between the period of early (9-12 years) to late (13-17 663 

years) adolescence (Urošević et al., 2012). However, only recently a longitudinal study pointed 664 

to the earlier maturation of functional connectivity between posterior HF and prefrontal brain 665 

regions influencing planning and problem-solving behavior (Calabro et al., 2020). The 666 

hippocampal-prefrontal connectivity was furthermore modulated by dopaminergic circuits 667 

suggesting an increased involvement of the dopaminergic system mediating goal-oriented 668 

behavior in early and middle adolescence (Calabro et al., 2020), supporting our observation of 669 

the hippocampal medial body-tail playing a major role during adolescence, and its involvement 670 

in reward and motor behavior probably modulated by dopaminergic and GABA circuits. 671 

 672 

Overall, our findings highly support the assumption that adolescence is a crucial period of life, 673 

probably susceptible to the emergence of substance abuse disorders (Paus et al., 2008) which 674 

might partly be related to the co-maturation and co-plasticity of the posterior HF, with limbic 675 

and frontal cortices. Higher sensitivity towards reward in adolescence may also promote goal-676 

directed behavior in education, sports and other beneficial domains promoting and enhancing 677 

health (Telzer, 2016).  678 
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  679 

Limitations and perspectives  680 

The analyses of the study were conducted in a cross-sectional study design. Thus, we can only 681 

interpret our HF parcellations as inter-individual age-related differences rather than intra-682 

individual age-related changes of hippocampal differentiation patterns. With the perspective of 683 

acquisition of longitudinal neuroimaging data in developmental cohorts, future studies could 684 

evaluate age-related changes in hippocampal large-scale integration and how these changes 685 

relate to the development of behavioral functions.  686 

Another limitation of the present study is the use of standard maps derived from adult data to 687 

characterize the structural covariance networks. For inferences about behavioral systems to 688 

which the networks pertain we used the Neurosynth database. NeuroSynth pooled the results 689 

of thousands of activation studies reported in the literature and the vast majority of these studies 690 

have been performed in adult samples. For inference about gene expression patterns to which 691 

our structural covariance maps relate, we used the Allen Human Brain Atlas. This atlas is based 692 

on gene expression data obtained from six adult brain donors. Although these resources provide 693 

robust spatial patterns of behavioral systems and gene expression in adults, they neglect 694 

potential age-related differences. Therefore, our characterizations were based on the 695 

assumption that in its core, neither spatial distribution of behavioral domains nor spatial 696 

distribution of gene expressions are inherently different between children, adolescents and 697 

adults. However, we are fully aware that these may differ in some cases between the age-groups 698 

(Ofen et al., 2012; Sterner et al., 2012). To the best of our knowledge, however, such robust 699 

activations and gene expression maps are currently lacking for developmental populations. 700 

Therefore, future studies are needed to more precisely disentangle how hippocampal structural 701 

maturation during the pivotal phases of life, childhood and adolescence relate to changes in 702 

functional networks associated to behavioral function and to gene expression.  703 
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