001007151 001__ 1007151
001007151 005__ 20240712113119.0
001007151 0247_ $$2doi$$a10.3390/membranes13050482
001007151 0247_ $$2Handle$$a2128/34368
001007151 0247_ $$2pmid$$a37233543
001007151 0247_ $$2WOS$$aWOS:000997997600001
001007151 037__ $$aFZJ-2023-01968
001007151 041__ $$aEnglish
001007151 082__ $$a570
001007151 1001_ $$0P:(DE-Juel1)174435$$aFischer, Liudmila$$b0$$eCorresponding author$$ufzj
001007151 245__ $$aRole of Fe/Co Ratio in Dual Phase Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 Composites for Oxygen Separation
001007151 260__ $$aBasel$$bMDPI$$c2023
001007151 3367_ $$2DRIVER$$aarticle
001007151 3367_ $$2DataCite$$aOutput Types/Journal article
001007151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683268484_32177
001007151 3367_ $$2BibTeX$$aARTICLE
001007151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007151 3367_ $$00$$2EndNote$$aJournal Article
001007151 520__ $$aDual-phase membranes are increasingly attracting attention as a solution for developing stable oxygen permeation membranes. Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 (CGO-F(3−x)CxO) composites are one group of promising candidates. This study aims to understand the effect of the Fe/Co-ratio, i.e., x = 0, 1, 2, and 3 in Fe3−xCoxO4, on microstructure evolution and performance of the composite. The samples were prepared using the solid-state reactive sintering method (SSRS) to induce phase interactions, which determines the final composite microstructure. The Fe/Co ratio in the spinel structure was found to be a crucial factor in determining phase evolution, microstructure, and permeation of the material. Microstructure analysis showed that all iron-free composites had a dual-phase structure after sintering. In contrast, iron-containing composites formed additional phases with a spinel or garnet structure which likely contributed to electronic conductivity. The presence of both cations resulted in better performance than that of pure iron or cobalt oxides. This demonstrated that both types of cations were necessary to form a composite structure, which then allowed sufficient percolation of robust electronic and ionic conducting pathways. The maximum oxygen flux is jO2 = 0.16 and 0.11 mL/cm2·s at 1000 °C and 850 °C, respectively, of the 85CGO-FC2O composite, which is comparable oxygen permeation flux reported previously.
001007151 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007151 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001007151 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x2
001007151 536__ $$0G:(GEPRIS)387282673$$aDFG project 387282673 - Die Rolle von Grenzflächen in mehrphasigen Ceroxid-basierten Membranen für den Einsatz in Membranreaktoren (387282673)$$c387282673$$x3
001007151 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007151 7001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b1$$ufzj
001007151 7001_ $$0P:(DE-Juel1)185885$$aSchmidt, Christina$$b2$$ufzj
001007151 7001_ $$0P:(DE-Juel1)181017$$aNeuhaus, Kerstin$$b3
001007151 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b4$$eCorresponding author
001007151 7001_ $$0P:(DE-Juel1)176603$$aBehr, Patrick$$b5$$ufzj
001007151 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
001007151 7001_ $$0P:(DE-Juel1)177619$$aBouwmeester, Henny J. M.$$b7
001007151 7001_ $$0P:(DE-HGF)0$$aNijmeijer, Arian$$b8
001007151 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9$$ufzj
001007151 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b10$$ufzj
001007151 773__ $$0PERI:(DE-600)2614641-1$$a10.3390/membranes13050482$$gVol. 13, no. 5, p. 482 -$$n5$$p482 -$$tMembranes$$v13$$x2077-0375$$y2023
001007151 8564_ $$uhttps://juser.fz-juelich.de/record/1007151/files/Fischer23%20-%20role%20of%20Fe-Co%20ratio%20in%20dual%20phase%20CGO-FCO%20composites.pdf$$yOpenAccess
001007151 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001007151 909CO $$ooai:juser.fz-juelich.de:1007151$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174435$$aForschungszentrum Jülich$$b0$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b1$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185885$$aForschungszentrum Jülich$$b2$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181017$$aForschungszentrum Jülich$$b3$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176603$$aForschungszentrum Jülich$$b5$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b9$$kFZJ
001007151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b10$$kFZJ
001007151 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007151 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001007151 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x2
001007151 9141_ $$y2023
001007151 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007151 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007151 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007151 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001007151 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001007151 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001007151 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007151 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001007151 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:24:35Z
001007151 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:24:35Z
001007151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:24:35Z
001007151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMEMBRANES-BASEL : 2022$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001007151 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001007151 920__ $$lyes
001007151 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001007151 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001007151 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
001007151 9801_ $$aFullTexts
001007151 980__ $$ajournal
001007151 980__ $$aVDB
001007151 980__ $$aUNRESTRICTED
001007151 980__ $$aI:(DE-Juel1)IEK-1-20101013
001007151 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001007151 980__ $$aI:(DE-Juel1)IEK-12-20141217
001007151 980__ $$aAPC
001007151 981__ $$aI:(DE-Juel1)IMD-4-20141217
001007151 981__ $$aI:(DE-Juel1)IMD-2-20101013