001007173 001__ 1007173
001007173 005__ 20250203103450.0
001007173 0247_ $$2doi$$a10.3390/ma16093500
001007173 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01971
001007173 0247_ $$2pmid$$a37176382
001007173 0247_ $$2WOS$$aWOS:000987643800001
001007173 037__ $$aFZJ-2023-01971
001007173 082__ $$a600
001007173 1001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b0$$eCorresponding author
001007173 245__ $$aHeat Treatment of High-Performance Ferritic (HiperFer) Steels
001007173 260__ $$aBasel$$bMDPI$$c2023
001007173 3367_ $$2DRIVER$$aarticle
001007173 3367_ $$2DataCite$$aOutput Types/Journal article
001007173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714558758_3375
001007173 3367_ $$2BibTeX$$aARTICLE
001007173 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007173 3367_ $$00$$2EndNote$$aJournal Article
001007173 520__ $$aHigh-performance Ferritic (HiperFer) steels are a novel class of heat-resistant, fully ferritic, Laves phase precipitation hardened materials. In comparison to conventional creep strength-enhanced 9–12 wt.% Cr ferritic–martensitic steels, HiperFer features increased mechanical strength, based on a thermodynamically stable distribution of small (Fe,Cr,Si)2(Nb,W) Laves phase precipitates, and—owing to its increased chromium content of 17 wt.%—improved resistance to steam oxidation, resulting in superior temperature capability up to 650 °C. Previous publications focused on alloying, thermomechanical processing, and basic mechanical property evaluation. The current paper concentrates on the effect of heat treatment on microstructural features, especially Laves phase population, and the resulting creep performance. At 650 °C and a creep stress of 100 MPa, an increase in rupture time of about 100% was achieved in comparison to the solely thermomechanically processed state.
001007173 536__ $$0G:(DE-HGF)POF4-1243$$a1243 - Thermal Energy Storage (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001007173 536__ $$0G:(BMBF)03EK3032$$aHochtemperatur- und Energiematerialien (03EK3032)$$c03EK3032$$x1
001007173 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007173 7001_ $$0P:(DE-HGF)0$$aTalik, Michal$$b1
001007173 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma16093500$$gVol. 16, no. 9, p. 3500 -$$n9$$p3500 -$$tMaterials$$v16$$x1996-1944$$y2023
001007173 8564_ $$uhttps://juser.fz-juelich.de/record/1007173/files/materials-16-03500.pdf$$yOpenAccess
001007173 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001007173 909CO $$ooai:juser.fz-juelich.de:1007173$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b0$$kFZJ
001007173 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1243$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001007173 9141_ $$y2024
001007173 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007173 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007173 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007173 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007173 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001007173 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007173 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001007173 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001007173 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007173 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001007173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2022$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:11Z
001007173 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:11Z
001007173 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:11Z
001007173 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001007173 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001007173 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
001007173 9801_ $$aAPC
001007173 9801_ $$aFullTexts
001007173 980__ $$ajournal
001007173 980__ $$aVDB
001007173 980__ $$aUNRESTRICTED
001007173 980__ $$aI:(DE-Juel1)IEK-2-20101013
001007173 980__ $$aAPC
001007173 981__ $$aI:(DE-Juel1)IMD-1-20101013