001007196 001__ 1007196
001007196 005__ 20240313103129.0
001007196 0247_ $$2doi$$a10.1371/journal.pcbi.1010989
001007196 0247_ $$2ISSN$$a1553-734X
001007196 0247_ $$2ISSN$$a1553-7358
001007196 0247_ $$2Handle$$a2128/34370
001007196 0247_ $$2pmid$$a37130121
001007196 0247_ $$2WOS$$aWOS:000981452500001
001007196 037__ $$aFZJ-2023-01976
001007196 041__ $$aEnglish
001007196 082__ $$a610
001007196 1001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b0$$eCorresponding author
001007196 245__ $$aCoherent noise enables probabilistic sequence replay in spiking neuronal networks
001007196 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2023
001007196 3367_ $$2DRIVER$$aarticle
001007196 3367_ $$2DataCite$$aOutput Types/Journal article
001007196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683285285_12004
001007196 3367_ $$2BibTeX$$aARTICLE
001007196 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007196 3367_ $$00$$2EndNote$$aJournal Article
001007196 520__ $$aAnimals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the context, decisions may be biased towards events that were most frequently experienced in the past, or be more explorative. A particular type of decision making central to cognition is sequential memory recall in response to ambiguous cues. A previously developed spiking neuronal network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. In response to an ambiguous cue, the model deterministically recalls the sequence shown most frequently during training. Here, we present an extension of the model enabling a range of different decision strategies. In this model, explorative behavior is generated by supplying neurons with noise. As the model relies on population encoding, uncorrelated noise averages out, and the recall dynamics remain effectively deterministic. In the presence of locally correlated noise, the averaging effect is avoided without impairing the model performance, and without the need for large noise amplitudes. We investigate two forms of correlated noise occurring in nature: shared synaptic background inputs, and random locking of the stimulus to spatiotemporal oscillations in the network activity. Depending on the noise characteristics, the network adopts various recall strategies. This study thereby provides potential mechanisms explaining how the statistics of learned sequences affect decision making, and how decision strategies can be adjusted after learning.
001007196 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
001007196 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001007196 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
001007196 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
001007196 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001007196 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
001007196 588__ $$aDataset connected to DataCite
001007196 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b1
001007196 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b2
001007196 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b3
001007196 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1010989$$gVol. 19, no. 5, p. e1010989 -$$n5$$p5$$tPLoS Computational Biology$$v19$$x1553-734X$$y2023
001007196 8564_ $$uhttps://juser.fz-juelich.de/record/1007196/files/journal.pcbi.1010989.pdf$$yOpenAccess
001007196 8767_ $$d2023-06-20$$eAPC$$jZahlung erfolgt
001007196 909CO $$ooai:juser.fz-juelich.de:1007196$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b0$$kFZJ
001007196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b2$$kFZJ
001007196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b3$$kFZJ
001007196 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
001007196 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001007196 9141_ $$y2023
001007196 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007196 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007196 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007196 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007196 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
001007196 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-18
001007196 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
001007196 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
001007196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007196 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
001007196 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007196 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-01-04T15:22:00Z
001007196 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-01-04T15:22:00Z
001007196 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-01-04T15:22:00Z
001007196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2022$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001007196 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001007196 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001007196 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001007196 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001007196 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
001007196 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
001007196 9801_ $$aFullTexts
001007196 980__ $$ajournal
001007196 980__ $$aVDB
001007196 980__ $$aUNRESTRICTED
001007196 980__ $$aI:(DE-Juel1)INM-6-20090406
001007196 980__ $$aI:(DE-Juel1)IAS-6-20130828
001007196 980__ $$aI:(DE-Juel1)INM-10-20170113
001007196 980__ $$aI:(DE-Juel1)PGI-7-20110106
001007196 980__ $$aI:(DE-Juel1)PGI-10-20170113
001007196 980__ $$aAPC
001007196 981__ $$aI:(DE-Juel1)IAS-6-20130828