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Abstract

Animals rely on different decision strategies when faced with ambiguous or uncertain cues.

Depending on the context, decisions may be biased towards events that were most fre-

quently experienced in the past, or be more explorative. A particular type of decision making

central to cognition is sequential memory recall in response to ambiguous cues. A previ-

ously developed spiking neuronal network implementation of sequence prediction and recall

learns complex, high-order sequences in an unsupervised manner by local, biologically

inspired plasticity rules. In response to an ambiguous cue, the model deterministically

recalls the sequence shown most frequently during training. Here, we present an extension

of the model enabling a range of different decision strategies. In this model, explorative

behavior is generated by supplying neurons with noise. As the model relies on population

encoding, uncorrelated noise averages out, and the recall dynamics remain effectively

deterministic. In the presence of locally correlated noise, the averaging effect is avoided

without impairing the model performance, and without the need for large noise amplitudes.

We investigate two forms of correlated noise occurring in nature: shared synaptic back-

ground inputs, and random locking of the stimulus to spatiotemporal oscillations in the net-

work activity. Depending on the noise characteristics, the network adopts various recall

strategies. This study thereby provides potential mechanisms explaining how the statistics

of learned sequences affect decision making, and how decision strategies can be adjusted

after learning.

Author summary

Humans and other animals often benefit from exploring multiple alternative solutions to

a given problem, rather than adhering to a single, global optimum. Such explorative

behavior is frequently attributed to noise in the neuronal dynamics. Supplying each neu-

ron or synapse in a neuronal circuit with noise, however, does not necessarily lead to

explorative dynamics. If decisions are triggered by the compound activity of ensembles of
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neurons or synapses, noise averages out, unless it is correlated within these ensembles. As

an analogy, consider a particle in a still fluid: despite the constant bombardment by sur-

rounding molecules, a large particle will hardly undergo any Brownian motion, because

the momenta of the impinging molecules largely cancel each other. Only if the molecules

move in a coherent manner, such as in a turbulent fluid, they can have a substantial influ-

ence on the particle’s motion. This modeling study exploits this effect to equip a neuronal

sequence-processing circuit with explorative behavior by introducing configurable, locally

coherent noise. It contributes to an understanding of the neuronal mechanisms underly-

ing different decision strategies in the face of ambiguity, and highlights the role of coher-

ent network activity such as traveling waves during sequential memory recall.

Introduction

Our brains are constantly processing sequences of events, such as during listening to a song or

perceiving the texture of an object. Through repeated exposure to these sequences, we effort-

lessly learn to predict upcoming events. In many circumstances, we have to make a decision of

what elements to recall next in response to a cue. A number of previous modeling studies have

proposed spiking neuronal network implementations of sequence learning and replay [1–5].

The spiking temporal-memory (TM) model described in [5] constitutes a biologically more

detailed reformulation of the abstract TM algorithm proposed in [6], and provides an energy

efficient sequence processing mechanism with high storage capacity by virtue of its sparse

activity. It learns complex sequences in an unsupervised, continual manner using biological,

local learning rules. After learning, the model successfully predicts upcoming sequence ele-

ments in a context dependent manner, and signals the occurrence of non-anticipated stimuli.

In contrast to the original TM model in [6], the spiking TM model employs a continuous-time

dynamics and predicts that sequences can be successfully learned and processed for a range of

sequence speeds with lower and upper bounds determined by electrophysiological parameters

such as synaptic and neuronal time constants.

The spiking TM model can be configured into a replay mode where it autonomously recalls

learned sequences in response to a cue stimulus. In nature, such cues are often incomplete or

ambiguous, and it is not always clear what sequence to recall given the current context. Despite

this ambiguity, we usually come to a clear decision on what sequence to recall. A key factor in

decision making is reward [7, 8]. In this regard, the optimal decision strategy is the one that

maximizes the reward, and is hence referred to as the maximization or exploitation strategy. A

number of studies demonstrate that decisions are often made in an apparently suboptimal

manner, such as probability matching [9, 10]. In binary choice tasks, for example, where the

probability of payoff is higher for one of the two possible choices, it appears most reasonable to

always decide for this high-payoff option. Instead, however, humans and other animals often

decide for each of the two choices with a probability that approximately matches the payoff

probability. While this behavior appears unreasonable at first glance, it may in fact be optimal

when taking into account previous (pre-experiment) experiences, such as prior knowledge of

changing reward contingencies. In cases where the reward probability or amplitudes change

over time, a more explorative behavior is beneficial [7, 11]. Previous studies suggest that deci-

sions are not only determined by rewards, but also by the frequency of previously experienced

input patterns [12, 13]. Accordingly, suboptimal decision strategies may at least partly arise as

a consequence of this additional influence of occurrence frequencies.
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A number of previous studies propose neuronal network models of decision making in the

face of ambiguous or incomplete stimuli. The majority of these models employ some form of

intrinsic stochastic dynamics or uncorrelated noise to generate explorative behavior [14–18].

Noise has been introduced in the form of random or non-task-related synaptic background

inputs [18], or in the form of synaptic stochasticity [17]. An alternative solution is proposed in

[16, 19], where the “noise” is generated by the complex but deterministic dynamics of the func-

tional network itself, without any additional sources of stochasticity. In most models, the noise

targeting different neurons or synapses is effectively uncorrelated. Supplying each element in a

neuronal circuit with uncorrelated noise, however, does not necessarily lead to explorative

dynamics: state variables arising from superpositions of many noisy, uncorrelated components

become effectively deterministic as a result of noise averaging [19]. The total input current of a

neuron generated from superpositions of many synaptic inputs, for example, is hardly affected

by the variability in the individual synaptic responses. Similarly, in models where individual

states are encoded by the activity of neuronal subpopulations [15], the state representations

become quasi deterministic if the single-neuron noise components are uncorrelated. Compen-

sating this noise averaging effect by increasing the noise amplitude appears to be an obvious

strategy, but may be hard to realize by the biological system.

An alternative, natural solution to the noise-averaging problem is to employ locally corre-

lated noise. In biological neuronal networks, coherent noise may arise by different mecha-

nisms: neighboring neurons typically receive inputs from partly overlapping presynaptic

neuron populations. The synaptic input currents to these neurons are therefore correlated. In

the literature, this type of correlation, which results from the anatomy of neurons and neuronal

circuits, is referred to as shared-input correlation [20, 21]. A second type of correlation in syn-

aptic input currents arises from correlations in the presynaptic spiking activity [22–24]. These

dynamical correlations occur during stationary network states, or can be generated by differ-

ent types of nonstationary activities, such as global oscillations in the population activity [25,

26] or traveling waves of activity propagating across the neuronal tissue [27–30].

This study addresses the problem of sequential decision making in the face of ambiguity

and the role of coherent noise in shaping decision strategies. We investigate how the spiking

TM model in [5] recalls sequences in response to ambiguous cues in the presence of locally

coherent noise, to what extent noise averaging can be overcome by increasing the noise ampli-

tude, and how different recall strategies can be achieved by adjusting the noise characteristics.

We further explore whether shared synaptic input and random stimulus locking to spatiotem-

poral oscillations can serve as appropriate, natural sources of coherent noise. In Materials and

methods, we provide a detailed description of the task and the network model.

Results

A spiking neural network recalls sequences in response to ambiguous cues

In this section, we provide a brief overview of the model and the task, illustrate how the net-

work learns overlapping sequences occurring with different frequencies during the training,

and show how these occurrence frequencies are encoded in the network. We then study the

network responses to ambiguous cues and the influence of the occurrence frequencies on the

recall behavior in the absence or presence of noise.

Similar to [5], the model consists of a randomly and sparsely connected network of NE

excitatory neurons (population E) and a single inhibitory neuron (Fig 1A). Each excitatory

neuron receives KEE excitatory inputs from other randomly chosen neurons in E. Excitatory

neurons are subdivided into M subpopulations, each containing neurons with identical stimu-

lus preference: in the absence of any additional connections, all neurons in a given
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subpopulation fire a spike upon the presentation of a specific sequence element. The inhibitory

neuron is recurrently connected to the excitatory neurons. In contrast to [5] where each excit-

atory subpopulation is equipped with its own inhibitory neuron, we here use a single inhibi-

tory neuron to implement a winner-take-all (WTA) competition between the subpopulations

of excitatory neurons. At the same time, the inhibitory neuron mediates the competition

between neurons within subpopulations and thereby leads to sparse activity and context sensi-

tivity, as described in [5] and below. The network is driven by external inputs, each represent-

ing a specific sequence element (“A”, “B”, . . .), and feeds all neurons in the subpopulation Mk

that have the same stimulus preference. Neurons are modeled as point neurons with the mem-

brane potential evolving according to the leaky integrate-and-fire dynamics [31]. The total

synaptic input current of excitatory neurons is composed of currents in distal dendritic

branches, inhibitory currents, and currents from external sources, see Eq (5). The inhibitory

neuron receives only inputs from excitatory neurons. The dynamics of dendritic currents

include a nonlinearity describing the generation of dendritic action potentials (dAPs), see Eq

(10). Synapses between excitatory neurons are plastic and subject to spike-timing-dependent

plasticity and homeostatic control. Details on the network model are given in Materials and

methods.

During the learning, the network is exposed to repeated presentations of S sequences s1, . . .,

sS, such that each sequence si occurs with a specific frequency pi (for details on the learning

protocol, see Materials and methods). For illustration, we focus here on a simple set of two

sequences {A,F,B,D} and {A,F,C,E}, where the first sequence is shown with a relative frequency

p1 = p and the second with p2 = 1 − p (e.g., p = 0.2 in Fig 2A). In the following, we refer to {A,F,

Fig 1. Network structure. A) The architecture constitutes a recurrent network of subpopulations of excitatory neurons (filled gray circles) and a

single inhibitory neuron (Inh). Each excitatory subpopulation contains neurons with identical stimulus preferences. Excitatory neurons are

stimulated by external sources providing sequence-element specific inputs “A”,“F”, “B”, etc. Connections between and within the excitatory

subpopulations are random and sparse. The inhibitory neuron is recurrently connected to all excitatory neurons. In the depicted example, the

network is repetitively presented with two sequences {A,F,B,D} (brown) and {A,F,C,E} (blue) during learning. The sequence {A,F,C,E} occurs twice

as often as {A,F,B,D}. B) During learning, the network forms sequence specific subnetworks (blue and brown arrows representing {A,F,B,D} and {A,

F,C,E}, respectively) as a result of the synaptic plasticity dynamics. The connections between subpopulations representing the sequence shown more

often are stronger (thick arrows). C) The network can be configured into a replay mode by increasing the neuronal excitability. During the replay

mode, the network is presented with a cue stimulus representing the first sequence element “A”. In addition, the excitatory subpopulations receive

input from distinct sources of background noise (gray traces) which is not present during learning. In the replay mode, the synaptic plasticity is

switched off.

https://doi.org/10.1371/journal.pcbi.1010989.g001
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B,D} as sequence 1 and to {A,F,C,E} as sequence 2. Before learning, presenting a sequence ele-

ment causes all neurons in the respective subpopulation to fire. During the learning process,

the repetitive sequential presentation of sequence elements increases the strength of connec-

tions between the corresponding subpopulations to a point where the activation of a certain

subpopulation by an external input generates dAPs in a specific subset of neurons in the sub-

population representing the subsequent element. The generation of the dAPs results in a long-

lasting depolarization (* 50 − 500 ms) of the soma. We refer to neurons that generate a dAP

as predictive neurons. When receiving an external input, predictive neurons fire earlier as

compared to non-predictive neurons. If a group of at least ρ neurons are predictive within a

certain subpopulation, their advanced spikes initiate a fast and strong inhibitory feedback to

all excitatory neurons, ultimately suppressing the firing of non predictive neurons. After learn-

ing, the model develops specific subnetworks representing the learned sequences (Fig 1B),

such that the presentation of a sequence element leads to a context dependent prediction of

the subsequent element [5]. As a result of Hebbian learning, the synaptic weights in the subnet-

work corresponding to the most frequent sequence during learning are on average stronger

than those for the less frequent sequence (Figs 1B, 3A and 4A). In the prediction mode, this

asymmetry in synaptic weights plays no role. For ambiguous stimuli, all potential outcomes

are predicted, i.e., the network predicts both “C” and “B” simultaneously in response to stimuli

“A” and “F”, irrespective of the training frequencies.

The model can be configured into a replay mode, where the network autonomously replays

learned sequences in response to a cue stimulus. This is achieved by changing the excitability

of the neurons such that the activation of a dAP alone can cause the neurons to fire [5]. In

addition, the synaptic plasticity is disabled during replay to preserve the encoding of the train-

ing frequencies in the synaptic weights (Fig 4A; see also Discussion). In the replay mode, we

present ambiguous cues and study whether the network can replay sequences following differ-

ent strategies (Fig 2B). We refer to the “maximum probability” strategy (Fig 2B, left) as the

case where the network exclusively replays the sequence with the highest occurrence frequency

during training. When adopting the “probability matching” strategy, the network replays

Fig 2. Task. A) During learning, the model is exposed to two (or more) competing sequences with different

frequencies. Here, sequence 1 ({A,F,B,D}; brown) is shown twice as often as sequence 2 ({A,F,C,E}; blue). The

respective normalized training frequencies p1 = 1/3 and p2 = 2/3 are depicted by the histogram. B) During replay, the

network autonomously recalls the sequences in response to an ambiguous cue (first sequence element “A”; open black

squares) according to different strategies. Maximum probability (max-prob): only the sequence with the highest

training frequency is replayed. Probability matching (prob. matching): the replay frequency of a sequence matches its

training frequency. Full exploration: all sequences are randomly replayed with the same frequency, irrespective of the

training frequency. Histograms represent the replay frequencies ffs1g and ffs2g, respectively.

https://doi.org/10.1371/journal.pcbi.1010989.g002
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sequences with a frequency that matches the training frequency (Fig 2B, middle). The “full

exploration” strategy refers to the case where all sequences are randomly replayed with the

same frequency, irrespective of the training frequency (Fig 2B, right). In Fig 3, we illustrate the

network’s decision behavior by presenting the ambiguous cue stimulus “A” three times. In the

absence of noise, the network adopts the maximum probability strategy (Fig 3B): as a result of

the higher weights between the neurons representing the more frequent sequence, the dAPs

are activated earlier in these neurons, which advances their somatic firing times with respect to

the neurons representing the less frequent sequence. This advanced response time quickly acti-

vates the inhibitory neuron, which suppresses the activity of the other neurons.

To assess the replay performance, we present the ambiguous cue “A” for Nt trials and exam-

ine the replay frequencies ffs1g and ffs2g of the two sequences s1 = {A,F,B,D} and s2 = {A,F,C,E}

as a function of their relative occurrence frequencies pi during training. We define the

Fig 3. Correlated noise enhances exploratory behavior. A) Sketch of subpopulations of excitatory neurons (boxes) representing the

elements of the two sequences {A,F,C,E} (seq. 2) and {A,F,B,D} (seq. 1). The subpopulations “C” and “B” are unfolded showing their

respective neurons. The arrows depict the connections after learning the task shown in Fig 2A. The line thickness represents the

population averaged synaptic weight. The presentation of the character “A” constitutes an ambiguous cue during replay. The inhibitory

neuron (Inh) mediates competition between subpopulations through the winner-take-all (WTA) mechanism. B,C,D) Spiking activity in

the subpopulations depicted in panel A in response to three repetitions of the ambiguous cue “A” (black triangles at the top and vertical

dotted lines) for three different noise configurations σ = 0 pA, c = 0 (B), σ = 26 pA, c = 0 (C), and σ = 26 pA, c = 1 (D). Brown, blue, and

silver dots mark somatic spikes of excitatory neurons corresponding to sequence 1, sequence 2, and both, respectively. For clarity, only the

sparse subsets of active neurons in each population are shown. Red dots mark spikes of the inhibitory neuron. Panels C and D depict the

representative recall behavior. See Fig 4 for a detailed statistics across trials and network realizations. See Table 9 for model parameters.

https://doi.org/10.1371/journal.pcbi.1010989.g003
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sequences {A,F,B,D} or {A,F,C,E} to be successfully replayed if more than 0.5ρ = 10 neurons in

the last subpopulations “E” or “D” have fired, respectively (for details on the assessment of the

replay statistics, see Materials and methods). In the absence of noise, the network replays only

the sequence with the highest training frequency p (Fig 4E). To understand this behavior, we

inspect the response latencies tB/C of the subpopulations “B” and “C” as a function of the train-

ing frequencies (Fig 4B). Here, the response latency

tx ¼
1

r

Xr

i2X

ti ð1Þ

of the subpopulation X representing sequence element x 2 {B,C} corresponds to the

Fig 4. Uncorrelated noise averages out in population based encoding. Dependence of A) the compound weights (PSC

amplitudes) wBF (brown) and wCF (blue; see Fig 3A), B–D) the population averaged response latencies tB and tC (subpopulation

averaged time of first spike after the cue “A”; see Eq (1) for subpopulations “B” (brown) and “C” (blue), and E–G) the relative

replay frequencies ffs1g and ffs2g of sequences 1 (brown) and 2 (blue), the failure rate f; (gray) and the joint probability f s1 ;s2f g of

replaying both sequences (silver) on the training frequency p1 = p of sequence 1. Note that the inhibition is disabled when

measuring the latencies to ensure that both competing populations “B” and “C” elicit spikes. Panels B–G depict results for three

different noise configurations σ = 0 pA, c = 0 (B,E), σ = 26 pA, c = 0 (C,F), and σ = 26 pA, c = 1 (D,G). In panel A, circles and error

bars depict the mean and the standard deviation across different network realizations. In panels B–D, circles and error bars

represent the mean and the standard deviation across Nt = 151 trials (cue repetitions), averaged across 5 different network

realizations. In panels E–G, circles represent the mean across Nt = 151 trials, averaged across 5 different network realizations. See

Table 9 for remaining parameters. Same task as described in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010989.g004
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population average of the single-neuron response latencies ti (time of first spike after the cue)

for each active neuron i 2 X in this subpopulation. Averaged across trials, the response latency

is smaller for the subpopulation participating in the sequence with the higher frequency. The

response latencies tB and tC decrease with increasing the respective training frequencies. In the

absence of noise, the distribution of the response latencies tB/C across trials is very narrow (Fig

4B). Consequently, neurons representing the most frequent sequence fire earlier in all trials.

For training frequencies between 0.4 and 0.6, the difference between tB and tC in some network

realizations is small compared to the response latency of the WTA circuit. Hence, both

sequences are occasionally replayed simultaneously (Fig 4E).

To foster exploratory behavior, i.e., to enable occasional replay of the low-frequency

sequence, we equip the excitatory neurons with background noise. For simplicity, this back-

ground noise is added only during replay, but not during the learning (see Discussion). In this

work, we investigate two different forms of background noise. Here, we first consider noise

provided in the form of stationary synaptic background input (see below for an alternative

form of noise). To this end, each subpopulation of excitatory neurons receives input from its

private pool of independent excitatory and inhibitory Poissonian spike sources (Fig 1C). The

background noise is parameterized by the noise amplitude σ (standard deviation of the synap-

tic input current arising from these background inputs) and the noise correlation c (see Fig 1C

and Materials and methods). Inputs to neurons of the same subpopulation are correlated by an

extent parameterized by c. Neurons in different subpopulations receive uncorrelated inputs.

The noise amplitude σ is chosen such that the subthreshold membrane potentials of the excit-

atory neurons are fluctuating without eliciting additional spikes. As a consequence, the distri-

butions of response latencies tB/C across trials may be broadened and partly overlap (Fig 4C

and 4D). As we will show in the following, the network can adopt different replay strategies

(Fig 2B) depending on the amount of this overlap. Note that noise is injected only during

replay, but not during learning. During training, the weak noise employed here hardly affects

the network behavior as the external inputs (stimulus) are strong and lead to a reliable, imme-

diate responses.

With uncorrelated noise (c = 0), the replay behavior remains effectively non-explorative,

i.e., only the high-frequency sequence is replayed in response to the cue (Fig 3C). This is

explained by the fact that each sequence element is represented by a subset of ρ neurons, or in

other words, that the response latency tx in Eq (1) is a population averaged quantity. Its across-

trial variance

vx ¼ VarðtxÞ ¼
1

r
vs þ

r � 1

r
csvs ð2Þ

is determined by the population size ρ, the population averaged spike-time variance

vs ¼
1

r

Pr

i VarðtiÞ, and the population averaged spike-time correlation coefficient

cs ¼
1

rðr� 1Þvs

Pr

i

Pr

j6¼i Covðti; tjÞ, with Cov(ti, tj) denoting the spike-time covariance for two

neurons i and j. Here, we use the subscript “s” to indicate that vs and cs refer to the (co-)vari-

ability in the (first) “spike” times. The spike-time statistics vs and cs depend on the input noise

statistics σ and c in a unique and monotonous manner [32, 33]. In the absence of correlations

(c = cs = 0), the across-trial variance v of tx vanishes for large population sizes ρ. For finite pop-

ulation sizes, v is non-zero but small (Fig 4C). The effect of the synaptic background noise on

the variability of response latencies largely averages out. Hence, the average advance in the

response of the population representing the high-frequency sequence cannot be overcome by

noise; the network typically replays only the sequence with the higher occurrence frequency

during training (Fig 4F). For small differences in the training frequencies (p� 0.5), the
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network occasionally fails to replay any sequence or replays both sequences. The mechanism

underlying this behavior is explained below.

Noise averaging is efficiently avoided by introducing noise correlations. For perfectly corre-

lated noise and, hence, perfectly synchronous spike responses (c = cs = 1), the across-trial vari-

ance v of the response latency t is identical to the across-trial variance vs of the individual spike

responses, i.e., v = vs, irrespective of the population size ρ; see Eq (2). For smaller but non-zero

spike correlations (0< cs < 1), the latency variance v is reduced but doesn’t vanish as ρ becomes

large. Hence, in the presence of correlated noise, the across-trial response latency distributions

for two competing populations have a finite width and may overlap (Fig 4D), thereby permitting

an occasional replay of the sequence observed less often during training (Figs 3D and 4G and S6

Fig). Replay, therefore, becomes more exploratory, such that the occurrence frequencies during

training are gradually mapped to the frequencies of sequence replay. With an appropriate choice

of the noise amplitude and correlation, even an almost perfect match between training and

replay frequencies can be achieved (probability matching; Fig 4G). For a training frequency

p = 0.2, the replay frequency matches p already after about 20 training episodes (S5 Fig).

The results presented so far can be extended towards more than two competing sequences. As

a demonstration, we train the network using five sequences {A,F,B,D}, {A,F,C,E}, {A,F,G,H}, {A,

F,I,J}, and {A,F,K,L} presented with different relative frequencies. By adjusting the noise ampli-

tude σ and correlation c, the replay frequencies can approximate the training frequencies (Fig 5).

Noise averaging cannot be overcome by increasing noise amplitude

For subpopulations of finite size ρ, the variance v of the response latency t remains finite, and can

be increased by scaling up the variance of the noise, even without correlation; see Eq (2). How-

ever, this solution cannot be applied to network models where a decision is mediated by a fast

WTA circuit. In the presence of uncorrelated noise with high amplitude, the spikes from all neu-

rons, in all competing subpopulations, are similarly dispersed. A large dispersion in spike times

prohibits a fast and reliable activation of inhibition by one of the competing subpopulations. The

WTA mechanism, therefore, fails at selecting a unique sequence. Consequently, both sequences

Fig 5. Multiple competing sequences are learned and replayed according to their occurrence frequencies

(probability matching). During learning, five competing, partly overlapping sequences s1 = {A,F,B,D}, s2 = {A,F,C,E},

s3 = {A,F,G,H}, s4 = {A,F,I,J}, and s5 = {A,F,K,L} are repetitively presented with relative training frequencies p1 = 0.1, p2

= 0.14, p3 = 0.2, p4 = 0.23, p5 = 0.33, respectively (dotted red lines). After learning, the network autonomously replays

the learned sequences in response to the ambiguous cue “A” with frequencies f s1f g
; f s2f g

; . . . ; f s5f g
depicted by the blue

bars. Parameters: σ = 12 pA, c = 1, τh = 4620 ms, z* = 21, Ne = 101, M = 12. See Table 9 for remaining parameters.

https://doi.org/10.1371/journal.pcbi.1010989.g005
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run through in most of the trials (Fig 6A). An additional problem of the uncorrelated noise is

that it impairs the propagation of the activity across the subpopulations of neurons. As our model

relies on the propagation of synchronously firing neurons, the spike time dispersion resulting

from the uncorrelated noise bears the risk that the spikes generated may be too dispersed to trig-

ger dAPs in the next subpopulation (Fig 6). As a result of these two problems, more explorative

behavior cannot be achieved by increasing the amplitude of uncorrelated noise. Instead, the prob-

ability of simultaneous replay (no decision) and the failure rate increase (Fig 6B).

Noise correlations lead to more synchronous responses, thereby reducing the overlap

between the within-trial latency distributions of the two competing populations “B” and “C”

(Fig 3D). In each trial, the WTA dynamics is therefore triggered by just one of the two popula-

tions, rather than by both. Further, synchronous firing leads to a more robust activation of the

subsequent subpopulation, and hence, a more robust replay. Hence, noise correlations help

not only in generating more explorative behavior, but also in reducing replay failures and the

chance of simultaneous activation of competing sequences (Fig 4G).

Noise amplitude and level of correlation control replay strategy

Psychophysics studies show that humans and other animals can flexibly change their decision

strategies in the face of uncertainty or ambiguity [7, 11]. In the context of the model proposed

here, this behavior is reproduced by adjusting the characteristics of the noise: by varying the

noise amplitude, the model can be tuned to adopt a maximum-probability (Fig 7A), a proba-

bility-matching (Fig 7B), or an even more exploratory replay strategy (Fig 7C), provided the

noise correlations are sufficiently strong. Similarly, it may be possible to change the replay

behaviors by varying the noise correlation level (S1 Fig), if some of the model parameters are

Fig 6. Winner-take-all mechanism fails when increasing the amplitude of the uncorrelated noise. A) Brown, blue, and silver

dots mark somatic spikes of excitatory neurons belonging to sequence {A,F,B,D} (seq. 1), sequence {A,F,C,E} (seq. 2), or both,

respectively. Red dots mark spikes from the inhibitory neuron. Each trial is initiated by stimulating the first element in the

sequence (“A”, see dark arrows and vertical dashed lines). During training, the sequences 1 and 2 are shown with relative

frequencies p1 = 0.3 and p2 = 0.7, respectively. B) Dependence of the relative replay frequencies ffs1g and ffs2g of sequence 1

(brown) and sequence 2 (blue), the failure rate f; (gray), and the joint probability f s1 ;s2f g of replaying both sequences (silver) on

the relative training frequency p1 = p of sequence 1. Circles represent the mean across Nt = 151 trials averaged across 5 network

realizations. Parameters: σ = 52 pA and c = 0. See Table 9 for the remaining parameters. Same task as described in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010989.g006
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adjusted during replay, especially to ensure a robust activity propagation of the less frequent

sequence (e.g., by decreasing JEI). In nature, a modulation of the noise amplitude is achieved

by changing the firing rate of the presynaptic neurons providing the background noise, or the

excitability of the target neurons via neuromodulatory [34] or attention signals [35].

So far, we discussed shared stationary presynaptic input as a potential source of correlated

noise occurring in nature. Shared input correlations resulting from the anatomy of cortical cir-

cuits are low [36–39]. To generate explorative replay behavior in the context of our model,

however, the level of noise correlation needs to be substantial (c* 1). In the following section,

we therefore propose an alternative form of noise, where high correlations arise from the net-

work dynamics.

Random stimulus locking to spatiotemporal oscillations as natural form of

noise

In vivo cortical activity is rarely stationary. Usually, it is characterized by substantial temporal

and spatial fluctuations, often occurring in the form of transient spatiotemporal oscillations,

i.e., cortical waves [27, 40–42]. In the presence of traveling cortical waves, nearby neurons share

the same oscillation phase, whereas distant neurons experience different phases (Fig 8). At the

time of stimulus arrival, neurons in the up phase are more excitable and tend to fire earlier than

neurons in a down phase. Cortical waves can be locked to external stimuli or events such as sac-

cades [43], but they also occur spontaneously without locking to external cues [44]. Here, we

exploit this finding and assume that the cue onset times are random with respect to the oscilla-

tion phase, thereby introducing a locally coherent form of trial-to-trial variability during replay.

To investigate the effect of this type of variability on the replay performance, we first train

the network in the absence of any background input using the same two-sequence task and

training setup discussed in earlier sections. During replay, we inject an oscillating background

current with amplitude a and frequency f into all excitatory neurons (see Materials and meth-

ods). Neurons within a given subpopulation share the same oscillation phase. Phases for differ-

ent subpopulations are randomly drawn from a uniform distribution between 0 and 2π. The

Fig 7. Different replay strategies achieved by increasing the noise amplitude. Dependence of the relative replay frequencies

ffs1g and ffs2g of sequence 1 (brown) and sequence 2 (blue), the failure rate f; (gray) and the joint probability f s1 ;s2f g of replaying

both sequences (silver) on the relative training frequency p1 = p of sequence 1 for different noise amplitudes σ = 0 pA (A), σ = 26

pA (B), and σ = 104 pA (C) with correlation coefficient c = 1. Circles represent the mean across Nt = 151 trials, averaged across 5

different network realizations. See Table 9 for remaining parameters. Same task as described in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010989.g007
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replay performance of the network is assessed by monitoring the network responses to repeti-

tive presentations of an external cue “A” with random, uniformly distributed inter-cue inter-

vals DTcue � Uðumin; umaxÞ. The analysis is repeated for a range of training frequencies p,

oscillation amplitudes a, and frequencies f.
Depending on the choice of the oscillation amplitude a and frequency f, the network repli-

cates different replay strategies (Fig 9). For low-amplitude oscillations, the model replays only

the sequence with the higher training frequency (max-prob). With increasing oscillation

amplitude, it becomes more explorative and occasionally replays the less frequent sequence. By

adjusting the oscillation amplitude, the replay frequency can be closely matched to the training

frequency. This behavior of the model is observed for a range of physiological frequency bands

such as alpha (* 10 Hz), beta (*30 Hz), and gamma (* 70 Hz) [45, 46]. Higher oscillation

frequencies are less effective due to the low-pass characteristics of neuronal membranes and

synapses. Consequently, increasing the oscillation frequency leads to a more reliable replay of

the most frequent sequence. For slow oscillations with long periods that are large compared to

the average inter-cue interval, the network responses in subsequent trials are more correlated.

For sufficiently many trials, however, the network can still explore different solutions.

To conclude: cortical waves in a range of physiological frequencies represent a form of

highly fluctuating and locally correlated background activity. The absence of a systematic stim-

ulus locking to this activity constitutes a natural source of randomness that does not average

out and is hence well suited to generate robust exploratory behavior. The degree of exploratori-

ness, i.e., the decision strategy, can be adjusted in a biologically plausible manner by control-

ling the wave amplitude or frequency.

Discussion

This work proposes a spiking neuronal network model performing probabilistic sequential

memory recall in response to ambiguous cues. Explorative recall is achieved by providing the

network with locally coherent noise. We explore two forms of this noise, implemented either

in the form of shared synaptic input or a random stimulus locking to global spatiotemporal

oscillations in the neuronal activity. The model explains the emergence of different recall

Fig 8. Random locking of stimulus to global oscillations as a form of noise. A) Snapshot of a wave of activity

traveling across a cortical region at time t1 of the 1st stimulus onset. Grayscale depicts wave amplitudes in different

regions. Brown and blue rectangles mark populations of neurons with stimulus preferences “B” and “C”, respectively.

B) Background inputs to neurons in populations “B” and “C” at different times. Background inputs to each population

“B” and “C” at different times. Background inputs to neurons within each population are in phase due to their spatial

proximity. Background inputs to different populations are phase shifted. Arrows on the top depict stimulus onset

times. The times t1, t2, . . . indicate input arrival to populations “B” and “C” (dashed vertical lines are random, not

locked to the background activity).

https://doi.org/10.1371/journal.pcbi.1010989.g008
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strategies by adjusting the noise characteristics, such as the noise or oscillation amplitude, as

well as the noise correlation or oscillation frequency.

The sequence processing model proposed here relies on a form of population encoding. In

the absence of correlations, noise injected to single neurons therefore largely averages out and

leads to a quasi-deterministic and non-exploratory behavior. Locally correlated noise, in con-

trast, permits an explorative recall behavior where the sequence frequency during learning can

be gradually mapped to the recall frequency. Furthermore, noise correlations foster synchroni-

zation between neurons within subpopulations, and thereby lead to a more robust context-spe-

cific activation of sequences during recall. The problem of noise averaging and the proposed

solution are not unique to the model presented here, but are generic for all systems where rele-

vant state variables arise from superpositions of many noisy, uncorrelated components. Fluc-

tuations in the total input current of a single neuron resulting from superpositions of

thousands of synaptic inputs, for example, can be efficiently controlled by the level of correla-

tion in the presynaptic activity [47]. Similarly, explorative behavior in other models of popula-

tion based probabilistic computing [15] can be enhanced by equipping neurons within each

population with correlated noise.

Fig 9. Changing replay strategy by modulation of spatiotemporal background oscillations. Dependence of the relative replay frequencies

ffs1g and ffs2g of sequences 1 (brown) and 2 (blue), the failure rate f; (gray), and the joint probability f s1 ;s2f g of replaying both sequences (silver)

on the relative training frequency p1 = p of sequence 1 for different amplitudes a 2 {0, 10, 20} and frequencies of the background oscillations:

f = 10 Hz (B,C), f = 30 Hz (A,D,E), and f = 70 Hz (F,G). Circles represent the mean across Nt = 181 trials, averaged across 5 network

realizations. See Table 9 for remaining parameters. Same task as described in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010989.g009
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Correlation in neuronal firing can originate from both anatomical constraints or network

dynamics [23, 24]. In this study, we investigate both types. The first type of noise is imple-

mented in the form of irregular synaptic background input [48–51], where the correlation

between neurons of the same subpopulation is resulting from shared presynaptic sources [20,

52]. From an anatomical perspective, this is reasonable as neighboring neurons indeed receive

a considerable amount of inputs from identical presynaptic neurons. However, we show that

the level of shared-input correlation required for an effective avoidance of noise averaging and

maintenance of near synchronous activity is rather high, which contradicts anatomical studies

reporting small connection probabilities in local cortical circuits, and hence, low levels of

shared input correlation [36–39]. We therefore propose a second, biologically more plausible

type of coherent noise resulting from a random stimulus locking to an intrinsic spatiotemporal

coherent activity pattern on a large spatial scale, such as waves of cortical activity. Coherent

spatiotemporal activity patterns in the cortex are observed in many different forms and under

various conditions, including different sleep states, but also in awake behaving animals [27, 42,

45, 46]. Cortical waves can occur spontaneously without being locked to external cues [44]. It

is therefore reasonable to assume that the onset time of an external cue is random with respect

to the internal state. As shown in this study, this randomness constitutes a natural, locally

coherent form of across-trial variability suitable to equip neuronal networks with exploratory

behavior. As shown in [44], the timing and position of spontaneous cortical waves before stim-

ulus onset are predictive of the stimulus evoked response and the target detection perfor-

mance. This is consistent with the model proposed here: the phase of the background

oscillation during cue presentation determines the decision outcome. During active vision,

cortical waves in the visual cortex have been observed to be tightly locked to the saccade onset

[43] and to continue into successive fixation periods [53]. The visual cue, i.e., the fixation

onset, is therefore locked to this saccade-triggered oscillating background activity. The eye-

movement related modulation of neuronal excitability may hence constitute a mechanism to

suppress across-trial variability and lead to more stereotype and reliable responses [44, 54].

In this study, we employ ongoing activity waves as a specific form of coherent spatiotempo-

ral activity, and show that explorative behavior is generated for a range of plausible oscillation

frequencies. We propose that a similar behavior can be achieved for other non-oscillatory

forms of coherent activity, such as transient propagating wave fronts or bumps [55–57], as well

as by other factors modulating the excitability of neighboring neurons in a coherent manner,

such as transient neuromodulatory signals. The use of ongoing oscillatory background activity

with constant frequency and phase differences is a simplification of this study. A more realistic

scenario would be one where each oscillation episode lasts for only few tens or hundreds of

milliseconds, and is followed by a new pattern with different phase characteristics. This, how-

ever, would not lead to a qualitatively new type of replay behavior as long as two characteristics

are preserved: first, at the time of the stimulus arrival, neurons in the same subpopulation

experience the same oscillation phase, while neurons in different subpopulations are exposed

to different phases, and second, the cue is presented at a different oscillation phase in each

trial.

By changing the noise characteristics (such as the amplitude or frequency of the back-

ground activity, or the level of correlation), the model proposed in this study can replay com-

peting sequences according to different strategies. For low levels of noise, the network

systematically replays the sequence that occurred most often during learning (max-prob). For

higher noise levels, it can match the replay frequency to the occurrence frequency during train-

ing (probability matching), or become even more explorative. This offers a potential mechanis-

tic explanation of how animals can adjust their decision strategy based on environmental

conditions [7]. In the living brain, the noise properties could be controlled by
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neuromodulatory signals or by inputs from other brain areas (e.g., during attention; [58]). Our

and many other studies predict that, in cases where the decision strategy is shifted towards

exploration, more energy needs to be provided for noise generation. In line with this predic-

tion, the work in [59] shows that explorative behavior is accompanied by an increase in the

BOLD signal amplitude in cortical areas associated with decision making.

In this study, we equip the network with noise only during sequence replay, but not during

training. From a biological point of view, the assumption of vanishing noise during training is

not necessarily implausible: as shown in this study, a random locking of the stimulus to an

intrinsic coherent spatiotemporal activity pattern may constitute the main cause of exploratory

behavior during sequential memory recall. Activity patterns such as traveling waves, however,

are not constantly present in the cortex. They may be suppressed during learning, and only

added during memory recall to a task-specific extent. Apart from this, the assumption of

noise-free training is not critical: in [5], we have shown that the spiking TM model can suc-

cessfully learn complex sequences in the presence of low and moderate levels of uncorrelated

background noise (see supplementary figures S6 and S7 in [5]). Only for large noise ampli-

tudes, the learning performance is impaired as the WTA dynamics are disrupted. If the noise

is locally correlated, this effect is less severe because correlated noise increases the response

variability across trials, but keeps the variability across neurons in each subpopulation small.

Hence, the WTA dynamics remain functional in each trial.

A number of previous studies suggest that synaptic stochasticity, i.e., the variability in post-

synaptic responses including synaptic failure [60], may constitute an efficient source of noise

for probabilistic computations in neuronal circuits [17, 61]. The total input to a neuron result-

ing from large ensembles of synapses, however, is likely to be subject to noise averaging. This

is in line with an in-vitro study showing that synaptic stochasticity has only a marginal effect

on the variability of postsynaptic responses [62]. Averaging of synaptic noise could only be

avoided if the variability of synaptic responses was correlated across synapses. To date, it

remains unclear how such correlations could potentially arise. Localized neuromodulatory sig-

nals or shared presynaptic spike histories may play a role in this.

The spiking TM model employed in this study can adopt a probability-matching strategy

because the plasticity dynamics during learning leads to an approximately linear mapping of

the relative sequence frequencies during training to the synaptic weights between neurons rep-

resenting consecutive sequence elements (Fig 4A). The information about the training fre-

quencies is hence stored in the synaptic weights. In this study, we freeze the synaptic weights

and preserve this mapping by deactivating the synaptic plasticity dynamics after learning. The

spiking TM model can learn the order of items in sequences for a range of different inter-stim-

ulus intervals, but not the timing or the duration of sequence elements. In the replay mode,

sequences are replayed with a constant high speed which is mainly determined by the synaptic

and neuronal time constants, irrespective of the sequence speed during training [5]. This

behavior is reminiscent of the fast, compressed sequence replay observed in hippocampus and

neocortex during sleep [63–67]. For our choice of parameters, the inter-element interval dur-

ing autonomous replay is about 30 ms, which is smaller than the inter-stimulus interval

ΔT = 40 ms during training. With an intact plasticity dynamics during replay, the potentiation

of synapses between neurons representing consecutive sequence elements would therefore be

substantially stronger than during training, because the spike-timing dependent weight incre-

ment increases with decreasing pre-post spike intervals in an exponential manner. As the syn-

aptic weights are limited by a hard upper bound Jmax (clipping), they would more easily be

driven into saturation, such that the information about the training frequency is lost. As a con-

sequence, competing sequences would be replayed in the presence of correlated noise with

similar frequencies, irrespective of the training frequencies (“full exploration”; see S3 Fig). In

PLOS COMPUTATIONAL BIOLOGY Probabilistic sequence replay in spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010989 May 2, 2023 15 / 31

https://doi.org/10.1371/journal.pcbi.1010989


the absence of noise or for uncorrelated noise, the network still adopts the max-prob strategy.

A modification of the STDP dynamics or a thorough tuning of the plasticity parameters may

preserve the probability matching performance, even without disabling the plasticity after

learning. Alternatively, the spiking TM model may be extended and equipped with additional

mechanisms that enable slow sequence replay or even a learning of the sequence speed [3].

For illustration, we have restricted this study to relatively simple sets of S = 2 (Figs 3, 4, 6, 7

and 9) or S = 5 sequences (Fig 5) with C = 4 elements per sequence and 2 overlapping charac-

ters. In [5], we have demonstrated that the spiking TM model can successfully learn larger

ensembles (up to 6) of longer sequences (up to 12 elements) with larger overlap (up to 10 ele-

ments). A systematic investigation of the spiking TM capacity accounting for the maximum

number S and length C of sequences as well as the maximum amount of overlap (history

dependence) will be subject of future studies (see also [68]). For a larger number S of compet-

ing sequences, probability matching becomes harder because the differences pi − pj between

the relative training frequencies pi (i = 1, . . ., S) in general become smaller, a consequence of

0� pi� 1 and
PS

i¼1
pi ¼ 1. Similar training frequencies lead to similar synaptic weights dur-

ing the learning process, and in turn, to similar cue response latencies. It is therefore more

likely that the winner-take-all dynamics does not come to a unique decision and leads to the

joint replay of multiple competing sequences. For the specific choice of noise parameters σ and

c used here, the replay frequency approximately match the training frequencies.

The spiking TM model introduced in [5] can learn sequences with repeating elements, pro-

vided these elements are not immediately following each other. Learning a sequence {A,B,C,

B}, for example, is possible, whereas learning of {A,B,B,C} is not. The plasticity dynamics

employed in [5] and in this study prohibits a strengthening of connections between synchro-

nously active neurons, i.e., neurons with the same stimulus preference (belonging to the same

subpopulation). If the time difference between a presynaptic and a postsynaptic spike is

smaller than Δtmin = 4 ms, a synapse between these neurons is neither potentiated by STDP

nor affected by the homeostatic component (see Eqs (13) and (14) in Table 6:Plasticity). With-

out this restriction, connections between neurons within a subpopulation would quickly grow,

in particular at an early learning stage where all neurons within a subpopulations fire in a non-

sparse, synchronous manner. As a consequence, the activation of a subset of neurons within

some subpopulation would immediately activate other neurons in the same population, and

hence trigger a self-prediction. For a sequence {A,B,B,C}, such a self-prediction is indeed

wanted, but only in response to the 2nd element. The 1st and the 3rd element must not lead to

a self-prediction. Sequences with immediately repeating characters hence require a modifica-

tion of the plasticity dynamics to permit the strengthening of connections between neurons

corresponding to the same character, and at the same time, suppress an excessive growth of

synapses between synchronously active neurons.

In the spiking TM model, postsynaptic currents are described by a current-based (CUBA)

model where each presynaptic spike triggers a stereotype current response, irrespective of the

postsynaptic membrane potential. Real synaptic (and other ionic) currents are mediated by

conductances and are determined by the distance of the membrane potential from the respec-

tive reversal potential. In combination with point neuron models, the use of conductance-

based (COBA) synapses is however problematic as each synapse would feel the same mem-

brane potential, irrespective of its type. In real neurons, synapses on different parts of the neu-

rons, e.g., different dendritic branches, experience different membrane potentials. In this

study, we therefore decide in favor of the CUBA synapse model. The neglect of the voltage

dependence of the synaptic current is particularly relevant for inhibitory currents. The activa-

tion of current-based inhibitory synapses can arbitrarily hyperpolarize the cell membrane (see
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S6 Fig). With a conductance-based (COBA) synapse model, in contrast, the membrane poten-

tial is bounded from below by the Cl− reversal potential which is close to the resting potential.

Future studies need to investigate to what extent the inhibition-mediated competition mecha-

nisms employed in this study and in [5] are altered if inhibitory currents are described by a

COBA model. Further, in the spiking TM model, inhibition is for simplicity mediated by a sin-

gle inhibitory neuron with very strong and very fast outgoing connections. Future versions of

the model could replace this inhibitory neuron by a recurrently connected network of inhibi-

tory neurons with realistic inhibitory weights and time constants. The inhibitory response

would still be very fast due to the fast-tracking property of such networks [69].

Overall, our work ties together concepts from sequence processing and decision making in

the face of ambiguity. It demonstrates that locally coherent noise is a potential mechanism

underlying exploratory behavior, and shows that a random stimulus locking to coherent back-

ground activity such as cortical waves constitutes a natural and efficient form of such noise.

Materials and methods

In the following, we provide an overview of the task and the training protocol, the network

model, and the analysis of the sequence replay statistics. A detailed description of the model

and a list of parameter values are provided in Tables 1–8 and Table 9, respectively.

Learning protocol and task

During learning, the network is continuously exposed to repeated presentations of an ensem-

ble of S sequences si ¼ fzi1; zi2; . . . ; ziCi
gðCi 2 N

þ; i 2 ½1; . . . ; S�Þ of ordered discrete items zij.

Table 1. Summary of the network model. Parameter values are given in Table 9.

Summary

Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X), background inputs in the form of Poissonian sources (Qk and Vk) or

sinusoidal current generators (G). E composed of M disjoint subpopulations Mk (k = 1, . . ., M)

Connectivity • sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model • excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration (dendritic action potentials)

• inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse

model

exponential or alpha-shaped postsynaptic currents (PSCs)

Plasticity homeostatic spike-timing dependent plasticity in excitatory-to-excitatory connections (during training)

https://doi.org/10.1371/journal.pcbi.1010989.t001

Table 2. Description of the populations. Parameter values are given in Table 9.

Populations

Name Elements Size

E ¼ [M
i¼kMk excitatory (E) neurons NE

I inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k, Mk \Ml ¼ ; ð8k 6¼ l 2 ½1;M�Þ nE

Qk excitatory Poisson generators, Qk \Ql ¼ ; ð8k 6¼ l 2 ½1;M�Þ n
Vk inhibitory Poisson generators, Vk \ V l ¼ ; ð8k 6¼ l 2 ½1;M�Þ n
X ¼ fx1; . . . ; xMg external spike sources M
G ¼ fg1; . . . ; gMg sinusoidal current generators M

https://doi.org/10.1371/journal.pcbi.1010989.t002

PLOS COMPUTATIONAL BIOLOGY Probabilistic sequence replay in spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010989 May 2, 2023 17 / 31

https://doi.org/10.1371/journal.pcbi.1010989.t001
https://doi.org/10.1371/journal.pcbi.1010989.t002
https://doi.org/10.1371/journal.pcbi.1010989


The order of the sequence elements within a given sequence represents the temporal order of

the item occurrence. To investigate the sequence recall performance in the presence of ambi-

guity, we design the sequences such that they overlap in the first two elements z1 = zi1 and z2 =

zi2 (i 2 [1, . . ., S]).

The training period is subdivided into Ne episodes. Each training episode is composed of L
sequences picked from the set {s1, s2, s3, . . ., pS} of S training sequences with relative frequen-

cies p1, p2, p3, . . ., pS, respectively, such that
PS

i¼1
pi ¼ 1. During training, this set of L

sequences is presented repetitively (Ne times) with fixed order. Randomizing the sequence

order during training doesn’t affect the results provided the relative frequencies are preserved

(S4 Fig). The total number piLNe of presentations of a specific sequence si during training is

proportional to the training frequency pi.

Table 3. Description of the connectivity. Parameter values are given in Table 9.

Connectivity

Source

population

Target

population

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, and synaptic time constants τij = τEE, plastic synaptic weights Jij
(8i 2 E; 8j 2 E; “EE connections”)

E I all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights Jij = JIE (8i 2 I ; 8j 2 E; “IE connections”)

I E all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights Jij = JEI (8i 2 E; 8j 2 I ; “EI connections”)

I I none (“II connections”)

Qk Mk random; fixed in-degrees Ki= KEQ, delays dij = dEQ, synaptic time constants τij = τEQ, and weights Jij 2 {0, JEQ}

(8i 2Mk; j 2 Qk; 8k 2 ½1;M�; “EQ connections”)

Vk Mk random; fixed in-degrees Ki=KEV, delays dij = dEV, synaptic time constants τij = τEV, and weights Jij 2 {0, JEV}

(8i 2Mk; j 2 Vk; 8k 2 ½1;M�; “EV connections”)

X k ¼ xk Mk one-to-all; fixed delays dij = dEX, synaptic time constants τij = τEX, and weights Jij = JEX (8i 2Mk; j 2 X k; 8k 2 ½1;M�; “EX

connections”)

Gk ¼ gk Mk one-to-all; fixed synaptic weights Jij = JEG (8i 2Mk; j 2 Gk; 8k 2 ½1;M�; “EG connections”)

all all no self-connections (“autapses”), no multiple connections (“multapses”)

– – all unmentioned connections I ! I , Vk ! Vk, Qk ! Qk . . . X k !Ml (8k 6¼ l) are absent

https://doi.org/10.1371/journal.pcbi.1010989.t003

Table 4. Description of the neuron model. Parameter values are given in Table 9.

Neuron

Type leaky integrate-and-fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) and spiking activity si(t) of neuron i:
• emission of the kth spike of neuron i at time tki if

Viðt
k
i Þ � yi ð3Þ

with somatic spike threshold θi
• spike train: siðtÞ ¼

P
k dðt � tki Þ

• reset and refractoriness:

ViðtÞ ¼ Vr 8k; 8t 2 ðt
k
i ; t

k
i þ tref ;i�

with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

tm;i
_V iðtÞ ¼ � ViðtÞ þ Rm;iIiðtÞ ð4Þ

with membrane resistance Rm;i ¼
tm;i

Cm;i
, membrane time constant τm,i, and total synaptic input current Ii(t) (see Table 5)

• excitatory neurons: τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (8i 2 E)

• inhibitory neurons: τm,i = τm,I, Cm,i = Cm, θi = θI, τref,i = τref,I (8i 2 I)

https://doi.org/10.1371/journal.pcbi.1010989.t004
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After successful learning, the presentation of some sequence element leads to a context

dependent prediction of the subsequent stimulus. In case the prediction is wrong the network

generates a mismatch signal [5]. As the learned sequence overlap in the first two elements,

choosing the cue to be the first sequence element (z1) results in an ambiguity. Here, we investi-

gate the replay frequency of a given sequence si as a function of its training frequency pi and

study whether the network can choose between different replay strategies (see Fig 2 and main

text).

Network model

Network structure. The network consists of a population E of NE excitatory (“E”) neurons

and a single inhibitory (“I”) neuron. The neurons in E are randomly and recurrently con-

nected, such that each neuron in E receives KEE excitatory inputs from other neurons in E.

Excitatory neurons are recurrently connected to the single inhibitory neuron. The excitatory

population E is subdivided into M non-overlapping subpopulations M1; . . . ;MM , each of

them containing neurons with identical stimulus preference (“receptive field”). Each subpopu-

lation Mk thereby represents a specific element within a sequence.

Table 5. Description of the synapse model. Parameter values are given in Table 9.

Synapse

Type continuous, exponential, or alpha-shaped postsynaptic currents (PSCs)

Description • total synaptic input current

excitatory neurons : IiðtÞ¼ IED;iðtÞ þ IEX;iðtÞ þ IEI;iðtÞ; 8i 2 E

inhibitory neurons : IiðtÞ¼ IIE;iðtÞ; 8i 2 I
ð5Þ

with dendritic, inhibitory, excitatory, and external input currents IED,i(t), IEI,i(t), IIE,i(t), IEX,i(t) evolving according to

IED;iðtÞ ¼
X

j2E

ðaij∗sjÞðt � dijÞ ð6Þ

with aijðtÞ ¼ Jij
e
tED

te� t=tEDYðtÞ and YðtÞ ¼
1 t � 0

0 else

(

tEI
_I EI;i ¼ � IEI;iðtÞ þ

X

j2I

Jijsjðt � dijÞ ð7Þ

tIE
_I IE;i ¼ � IIE;iðtÞ þ

X

j2E

Jijsjðt � dijÞ ð8Þ

IEX;iðtÞ ¼ IS;iðtÞ þ IB;iðtÞ ð9Þ

where IS,i(t) and IB,i(t) are the stimulus and the background input, respectively (see Table 7:Input).

• suprathreshold dynamics of dendritic currents (dAP generation):

• emission of kth dAP of neuron i at time tk
dAP;i if IED;iðtkdAP;iÞ � ydAP

• dAP current plateau:

IED;iðtÞ ¼ IdAP 8k; 8t 2 ðtkdAP;i; t
k
dAP;i þ tdAPÞ ð10Þ

with dAP current plateau amplitude IdAP, dAP current duration τdAP, and dAP activation threshold θdAP

• reset: IED;iðtkdAP;i þ tdAPÞ ¼ 0 (8k)

• reset and refractoriness in response to emission of lth somatic spike of neuron i at time tli :
IED;iðtÞ ¼ 0 8l; 8t 2 ðtli ; tli þ tref ;iÞ ð11Þ

• reset of IED,i in case of a strong inhibitory current:

IED;iðtki Þ ¼ 0; if IEI;iðtki Þ < Iy; ð12Þ
where Iθ is the reset dAP current.

https://doi.org/10.1371/journal.pcbi.1010989.t005
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External inputs during learning. The network is driven by an ensemble X ¼
fx1; . . . ; xNstim

g of M external inputs. Each of these external inputs xk represents a specific

sequence element (“A”, “B”, . . .), and feeds all neurons in the subpopulation Mk that have the

same stimulus preference. The occurrence of a specific sequence element zi,j at time ti,j is mod-

eled by a single spike xk(t) = δ(t − ti,j) generated by the corresponding external source xk.
During training, subsequent sequence elements zi,j and zi,j+1 within a sequence si are pre-

sented with an inter-stimulus interval ΔT = ti,j+1 − ti,j. Subsequent sequences si and si+1 are sep-

arated in time by an inter-sequence time interval DTseq ¼ tiþ1;1 � ti;Ci
.

Table 6. Description of the plasticity model. Parameter values are given in Table 9.

Plasticity

Type spike-timing dependent plasticity and dAP-rate homeostasis

EE

synapses

• dynamics of synaptic weight Jij(t) (EE connections) during learning:

8Jmin < Jij < Jmax :

J � 1
max

dJij
dt
¼ lþ

X

ft∗i g
0

xjðtÞdðt � ½t
∗
i þ dEE�ÞIðt

∗
i ;Dtmin;DtmaxÞ

� l� yi
X

ft∗j g

dðt � t∗j Þ

þ lh

X

ft∗i g
0

ðz∗ � ziðtÞÞdðt � t∗i ÞIðt
∗
i ;Dtmin;DtmaxÞ:

8ftjJijðtÞ < Jming : JijðtÞ ¼ Jmin

8ftjJijðtÞ > Jmaxg : JijðtÞ ¼ Jmax

ð13Þ

with

• list of presynaptic spike times ft∗j g,

• list of postsynaptic spike times ft∗i g
0
¼ ft∗i j8t∗j : t∗i � t∗j þ dEE � Dtming

• indicator function

Iðt∗i ;Dtmin;DtmaxÞ ¼ Rðt∗i � tþj þ dEEÞ

with RðtÞ ¼
1 Dtmin < t < Dtmax

0 else;

8
><

>:

ð14Þ

• maximum weight Jmax, minimum weight Jmax, potentiation and depression rates λ+, λ-, homeostasis rate λh, delay dEE, depression decrement yi,
minimum Δtmin and maximum Δtmax time lags between pairs of pre- and postsynaptic spikes at which synapses are potentiated, nearest presynaptic spike

time tþj preceding t∗i ,

• spike trace of postsynaptic neuron i, evolving according to

dxj
dt
¼ � t� 1

þ
xjðtÞ þ

X

t∗j

dðt � t∗j Þ

with presynaptic spike times t∗j and potentiation time constant τ+,

• dAP trace of postsynaptic neuron i, evolving according to

dzi
dt
¼ � t� 1

h ziðtÞ þ
X

k

dðt � tkdAP;iÞ

with onset time tk
dAP;i of the kth dAP, homeostasis time constant τh, and

• target dAP activity z*
all other

synapses

non-plastic

https://doi.org/10.1371/journal.pcbi.1010989.t006
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External inputs during replay. After learning the set of sequences S, we present cue sig-

nals encoding for first sequence elements z�,1 by repetitively activating the corresponding

external spike source xk (see above) at Nt time points t1, t2, . . ., tNt . Subsequent cues are sepa-

rated by an inter-trial interval ΔTcue,j = tj+1 − tj. In section “A spiking neural network recalls

sequences in response to ambiguous cues”, ΔTcue,j is constant and in section “Random stimu-

lus locking to spatiotemporal oscillations as natural form of noise”, ΔTcue,j is randomly and

uniformly distributed between umin and umax.

During the replay, excitatory neurons are additionally driven by a background input imple-

mented either in the form of asynchronous irregular synaptic bombardment (see “A spiking

neural network recalls sequences in response to ambiguous cues”) or oscillatory inputs (see

“Random stimulus locking to spatiotemporal oscillations as natural form of noise”). The first

Table 7. Description of the input and the output. Parameter values are given in Table 9.

Input

• prediction mode

• stimulus

* repetitive stimulation of the network using the same set S ¼ fs1; . . . ; sSg of sequences si ¼ fzi;1; zi;2; . . . ; zi;Ci
g of ordered discrete items zi,j with number of

sequences S and length Ci of ith sequence

* presentation of sequence element zi,j at time ti,j modeled by a single spike xk(t) = δ(t − ti,j) generated by the corresponding external source xk
* generated current as a response to the presentation of the sequence elements:

tS
_I S;i ¼ � IS;iðtÞ þ

X

j2X

Ji;jxjðt � dijÞ ð15Þ

* inter-stimulus interval ΔT = ti,j+1 − ti,j between subsequent sequence elements zi,j and zi,j+1 within a sequence si
* inter-sequence time interval DTseq ¼ tiþ1;1 � ti;Ci

between subsequent sequences si and si+1

* example sequence sets:

• sequence set I: S={{A, F, B, D}, {A, F, C, E}}

• sequence set II: S={{A, F, B, D}, {A, F, C, E}, {A, F, G, H}, {A, F, I, J}, {A, F, K, L}}

• replay mode

• stimulus

* presentation of a cue encoding for first sequence elements z1 at time tj, where j denotes the trial number (j 2 [1, . . ., Nt]).

* inter-trial interval ΔTcue = tj+1 − tj

• background input in the form of

* stationary correlated inputs

tB
_IB;iðtÞ ¼ � IB;iðtÞ þ

X

j2Q

Ji;jsjðt � dÞ þ
X

j2V

Ji;jsjðt � dÞ ð16Þ

with Poissonian spike trains sj(t) of rate ν, synaptic weight Ji,j 2 {0, J} where J = JEQ = −JEV, synaptic time constant τB = τEQ = τEV, and delay d = dEQ = dEV

• variance of IB,i(t) across time:

s2 ¼ VarðIB;iðtÞÞ ¼ J2KntB; ð17Þ
where K = KEQ = KEV is the number of either excitatory or inhibitory Poissonian input per excitatory neuron

• correlation coefficient of IB,i(t) and IB,j(t) across time:

c ¼
CovðIB;iðtÞ; IB;jÞðtÞ

s2
¼

0 8i 2Mk; 8j 2Ml ð8k 6¼ lÞ

K
n
8i 2Mk; 8j 2Ml ð8k ¼ lÞ;

8
><

>:
ð18Þ

where n is the number of either excitatory or inhibitory Poissonian sources (see Table 3)

* or oscillatory currents

IB;iðtÞ ¼ JEG � a � sinð2pft þ fiÞ ð19Þ
with amplitude a, frequency f, and population specific phase fi = fk (8i 2Mk)

Output

• somatic spike times ftki j8i 2 E; k ¼ 1; 2; . . .g

• dendritic currents IED,i(t) (8i 2 E)

https://doi.org/10.1371/journal.pcbi.1010989.t007

PLOS COMPUTATIONAL BIOLOGY Probabilistic sequence replay in spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010989 May 2, 2023 21 / 31

https://doi.org/10.1371/journal.pcbi.1010989.t007
https://doi.org/10.1371/journal.pcbi.1010989


is realized using ensembles of excitatory and inhibitory spike sources Qk and Vk (k 2 [1, . . .,

M]), each composed of n elements. Each source is an independent realization of a Poisson

point process with a rate ν. Excitatory neurons in the same subpopulation Mk receive KEQ

inputs with weight JEQ from the ensemble Qk and KEV inputs with weights JEV = −JEQ from the

ensemble Vk. Spikes from Qk and Vk give rise to a jump in the synaptic current of the postsyn-

aptic cell followed by an exponential decay with a time constant τEQ and τEV = τEQ, respec-

tively. The time average input current of a neuron i is

mi ¼ 0 ð20Þ

and the variance across time

s2

i ¼ KJ2ntB ð21Þ

where J = JEQ = −JEV, τB = τEQ = τEV, and K = KEQ = KEV. Given that the populations of back-

ground sources are of a finite size, there is a probability that two neurons in the same subpopu-

lation pick a certain number of identical sources, this gives rise to the so called shared input

correlation. The correlation coefficient in the input current is governed by

c ¼
K
n
: ð22Þ

With this relationship, we can now vary the correlation coefficient by fixing K and varying n.

For the special case where c is zero, we assume that each neuron has its own set of independent

Poissonian sources. The second type of background input is implemented using an ensemble

G of M sinusoidal current generators gk, each with a frequency f, amplitude a, and a phase fk

(k 2 [1, . . ., M]). Excitatory neurons in the same subpopulation Mk receive oscillatory inputs

from the same source gk.
Note that the additional background noise described above is not present during the training.

Neuron and synapse model. For all types of neurons, the temporal evolution of the mem-

brane potential is given by the leaky integrate-and-fire model Eq (4). The total synaptic input

current of excitatory neurons is composed of currents in distal dendritic branches, inhibitory

Table 8. Description of the initial conditions and simulation details. Parameter values are given in Table 9.

Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (8i 2 E [ I)

• dendritic currents: IED,i(0) = 0 (8i 2 E)

• external currents: IS,i(0) = 0 and IB,i(0) = 0 (8i 2 E)

• inhibitory currents: IEI,i(0) = 0 (8i 2 E)

• excitatory currents: IIE,i(0) = 0 (8i 2 I)

• synaptic weights: Jijð0Þ � UðJ0;min; J0;maxÞ (uniform distribution; 8i; j 2 E)

• spike traces: xi(0) = 0 (8i 2 E)

• dAP traces: zi(0) = 0 (8i 2 E)

• connectivity and initial weights are randomly and independently drawn for each network realization

Simulation details

• network simulations performed in NEST [78] version 3.0 [79]

• definition of excitatory neuron model using NESTML [80, 81]

• synchronous update using exact integration of system dynamics on discrete-time grid with step size Δt [82]

• source code underlying this study: https://doi.org/10.5281/zenodo.6378376

https://doi.org/10.1371/journal.pcbi.1010989.t008
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Table 9. Model and simulation parameters. Parameters derived from other parameters are marked in gray. Curly brackets depict a set of values corresponding to different

experiments. Bold numbers depict default values.

Name Value Description

Network

NE {900, 1800} total number of excitatory neurons

NI 1 total number of inhibitory neurons

M {6, 12} number of excitatory subpopulations (= number of external spike sources)

nE NE=M ¼ 150 number of excitatory neurons per subpopulation

ρ 20 (target) number of active neurons per subpopulation after learning = minimal number of coincident excitatory inputs required

to trigger a spike in postsynaptic inhibitory neurons

n {100, . . ., 1000} number of excitatory or inhibitory Poissonian sources

Connectivity

KEE {180, 360} number of excitatory inputs per excitatory neuron (EE in-degree)

p KEE=NE ¼ 0:2 connection probability

KEI NI ¼ 1 number of inhibitory inputs per excitatory neuron (EI in-degree)

KIE NE number of excitatory inputs per inhibitory neuron (IE in-degree)

KII 0 number of inhibitory inputs per inhibitory neuron (II in-degree)

KEQ 100 number of excitatory Poissonian inputs per excitatory neuron (EQ)

KEV KEQ ¼ 100 number of inhibitory Poissonian inputs per excitatory neuron (EV)

Excitatory neurons

τm,E 10 ms membrane time constant

τref,E 20 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0 mV reset potential

θE 20 mV (training), 7 mV

(replay)

somatic spike threshold

IdAP 200 pA dAP current plateau amplitude

τdAP 60 ms dAP duration

θdAP 59 pA dAP threshold

Iθ −1000 pA reset dAP current

Inhibitory neurons

τm,I 5 ms membrane time constant

τref,I 2 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0 mV reset potential

θI 15 mV spike threshold

Synapse

JIE * 532.76 pA weight of IE connections (EPSC amplitude)

JEI * −12915.49 pA weight of EI connections (IPSC amplitude)

JEX * 4112.20 pA weight of EX connections (EPSC amplitude)

JEQ s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KEQntEQ

p
weight of EQ connections (EPSC amplitude)

JEV � JEQ weight of EV connections (EPSC amplitude)

JEG 1 pA weight of EG connections (EPSC amplitude)

τEE 30 ms synaptic time constant of EE connections

τEI 1 ms synaptic time constant of EI connections

τEX 2 ms synaptic time constant of EX connection

τIE 0.5 ms synaptic time constant of IE connections

τEQ 2 ms synaptic time constant of EQ connections

tEV tEQ ¼ 2 ms synaptic time constant of EV connections

dEE 2 ms delay of EE connections (dendritic)

(Continued)
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currents, and currents from external sources. The inhibitory neuron receives only inputs from

excitatory neurons. Individual spikes arriving at dendritic branches evoke alpha-shaped post-

synaptic currents, see Eq (6). The dendritic current includes an additional nonlinearity

describing the generation of dendritic action potentials (dAPs; NMDA spikes): if the dendritic

current IED exceeds a threshold θdAP, it is instantly set to the dAP plateau current IdAP, and

clamped to this value for a period of duration τdAP, see Eq (10). This plateau current leads to a

long lasting depolarization of the soma. The dendritic input current IED constitutes a

Table 9. (Continued)

Name Value Description

dIE 0.1 ms delay of IE connections

dEI 0.1 ms delay of EI connections

dEX 0.1 ms delay of EX connections

dEQ 0.1 ms delay of EQ connections

dEV dEQ ¼ 0:1 ms delay of EV connections

Plasticity

λ+ 0.0009 potentiation rate

λ− 0.000014 depression rate

λh 0.0008 homeostasis rate

Jmin 0 pA minimum weight

Jmax 35 pA maximum weight

J0,min 0 pA minimal initial weight

J0,max 1 pA maximal initial weight

τ+ 20 ms potentiation time constant

z* 10.35 target dAP activity

τh 2200 ms homeostasis time constant

yi 1 depression decrement

Δtmin 4 ms minimum time lag between pairs of pre- and postsynaptic spikes at which synapses are potentiated

Δtmax 50 ms maximum time lag between pairs of pre- and postsynaptic spikes at which synapses are potentiated

Input

S {2, 5} number of sequences per set

C 4 number of characters per sequence

A {6, 12} alphabet length

Ne {151, 101} number of training episodes

L 10 number of sequences in a training episode

ΔT 40 ms inter-stimulus interval (during training)

ΔTseq 100 ms inter-sequence interval (during training)

Nt 151 number of cue presentations (trials)

ΔTcue 200 ms or� Uðumin umaxÞ inter-cue interval

umin 200 ms minimal inter-cue interval

umax 400 ms maximal inter-cue interval

σ {0, 26, 104} pA noise amplitude resulting from the Poissonian background inputs

c n=KEQ 2 ½0; 1� noise correlation

ν 1000s−1 rate of Poissonian background inputs

a {0, 10, 20} amplitude of the sinusoidal current generators

f {10, 30, 70} Hz frequency of the sinusoidal current generators

Simulation

Δt 0.1 ms time resolution

https://doi.org/10.1371/journal.pcbi.1010989.t009
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simplified, phenomenological description of the effect of NMDA spikes on the somatic mem-

brane potential [70–72]. Similar models have been introduced in previous theoretical studies

[73, 74]. For simplicity, we equip each excitatory neuron with only a single dendritic branch,

i.e., a single dendritic input current IED. We employ alpha-function shaped postsynaptic den-

dritic currents with finite rise times to ensure that the response latencies during cue-triggered

sequence replay depend on the synaptic weights of connections between excitatory neurons,

and hence, on the occurrence frequencies of the learned sequences during training (see section

“A spiking neural network recalls sequences in response to ambiguous cues”). Inhibitory

inputs to excitatory neurons as well as excitatory inputs to the inhibitory neuron trigger expo-

nential postsynaptic currents, see Eqs (7) and (8). The weights JIE of excitatory synapses on the

inhibitory neuron are chosen such that the collective firing of a subset of ρ excitatory neurons

in the corresponding subpopulation causes the inhibitory neuron to fire. The weights JEI of

inhibitory synapses on excitatory neurons are strong such that each inhibitory spike prevents

all excitatory neurons in the network from firing within a time interval of few milliseconds.

External inputs are composed of currents resulting from the presentation of the sequence ele-

ments or currents from background inputs (see Inputs in Table 7). All synaptic time constants,

delays, and weights are connection-type specific.

Plasticity. Only excitatory to excitatory (EE) synapses are plastic. All other connections

are static. The dynamics of the EE synaptic weights Jij evolve according to a combination of an

additive spike-timing-dependent plasticity (STDP) rule [75] and a homeostatic component

[76, 77]. During the replay mode, the plasticity is disabled and the EE weights are kept constant

(see Table 6 for details about the plasticity).

Network realizations and initial conditions. For every network realization, the connec-

tivity and the initial weights are drawn randomly and independently. All other parameters are

identical for different network realizations. The initial values of all state variables are given in

Tables 8 and Table 9.

Simulation details. The network simulations are performed in the neural simulator

NEST [78] under version 3.0 [79]. The differential equations and state transitions defining the

excitatory neuron dynamics are expressed in the domain specific language NESTML [80, 81]

which generates the required C++ code for the dynamic loading into NEST. Network states

are synchronously updated using exact integration of the system dynamics on a discrete-time

grid with step size Δt [82]. The full source code for the implementation with a list of other soft-

ware requirements is available at Zenodo: https://doi.org/10.5281/zenodo.6378376.

Sequence replay statistics

We define a sequence si to be replayed in response to a cue if more than 0.5ρ neurons in the

subpopulation representing the last element in si fire. The parameter ρ corresponds to the min-

imal number of neurons that is required to trigger the WTA circuit. It therefore represents the

minimal number of active neurons in a subpopulation after successful learning. In the absence

of noise, the actual number of active neurons in a subpopulation after successful learning is

indeed close to ρ (see [5]). In the present study, we find a similar behavior in the presence of

correlated noise (see S2 Fig).

Consider the set S ¼ fs1; s2; . . . ; sSg of S sequences learned by the network. Let

P ¼ f;; fs1g; fs2g; . . . ; fs1; s2g; fs1; s3g; . . . ;Sg

denote the power set of S, i.e., the set of all subsets of S, including the empty set and S itself.

We define the relative replay frequency fPk
of each subset Pk 2 P of sequences as the
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normalized number of exclusive replays of this subset Pk, such that
X

Pk

fPk
¼ 1: ð23Þ

For two sequences s1 and s2, for example, we monitor the four different replay frequencies f;
(no sequence is replayed), ffs1g (only s1 is replayed), ffs2g (only s2 is replayed), and f s1 ;s2f g (both s1
and s2 are replayed). In this work, we refer to f; as the “failure rate”. Simultaneous replay of

both sequences (f s1 ;s2f g) refers to cases where the network fails at coming to a unique decision.

Supporting information

S1 Fig. Adjusting level of correlation permits different replay strategies. Dependence of the

relative replay frequencies ffs1g and ffs2g of sequences 1 (A, B) and 2 (C, D) on the training fre-

quency p1 = p of sequence 1 for three different correlation levels c = 0, c = 0.8, and c = 1 (A, C),

and for a range of correlations (B, D). Parameters: noise amplitude σ = 15 pA and inhibitory

weight during replay JEI = −430.51 pA adjusted only for connections from the inhibitory neu-

ron to the subpopulation F. The replay frequencies are computed as the mean across Nt = 151

trials, averaged across 5 different network realizations. See Table 9 for remaining parameters.

(EPS)

S2 Fig. Response sparsity during replay in the presence of correlated noise. Dependence of

the number of active neurons in the subpopulation corresponding to the last element in {A, F,

B, D} (brown) and {A, F, C, E} (blue) on the relative training frequency of sequence 1. The dot-

ted gray horizontal line depicts the target number of active neurons per subpopulation after

learning. Noise parameters: σ = 26 pA, c = 1. See Table 9 for remaining parameters.

(EPS)

S3 Fig. Sequence replay in the presence of ongoing synaptic plasticity. Dependence of A)

the compound weights (PSC amplitudes) wBF (brown) and wCF (blue), B) the population aver-

aged response latencies tB and tC for subpopulations “B” (brown) and “C” (blue), C) the rela-

tive replay frequencies ffs1g and ffs2g of sequences 1 (brown) and 2 (blue), the failure rate f;
(gray) and the joint probability f s1;s2f g of replaying both sequences (silver) on the training fre-

quency of sequence 1. In panel A, circles and error bars depict the mean and the standard devi-

ation across different network realizations. In pane B, circles and error bars represent the

mean and the standard deviation across Nt = 101 trials (cue repetitions), averaged across 5 dif-

ferent network realizations. Note that we run the replay for 200 trials but plotted the statistic of

only the last 101 trials. In panel C, circles represent the mean across Nt = 101 trials, averaged

across 5 different network realizations. Noise parameters: σ = 26 pA, c = 1 (right). See Table 9

for remaining parameters. The data depicted here are results from simulations with enabled

synaptic plasticity dynamics during replay. For the results shown in Fig 4, in contrast, the plas-

ticity is disabled during replay to preserve the synaptic weight configuration after the training.

(EPS)

S4 Fig. Sequence replay for randomized sequence order during training. Dependence of the

relative replay frequencies of sequences 1 (brown) and 2 (blue), the failure rate (gray) and the

joint probability of replaying both sequences (silver) on the training frequency of sequence 1

for three different noise configurations σ = 0 pA, c = 0 (left), σ = 26 pA, c = 0 (middle), and σ =

26 pA, c = 1 (right). Circles represent the mean across Nt = 151 trials, averaged across 5 differ-

ent network realizations. The data depicted here is generated using the same setting as in Fig
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4F and 4G, but with a randomized order of sequences during the training.

(EPS)

S5 Fig. Effect of the learning duration on the probability matching performance. Depen-

dence of the replay frequencies of sequences 1 (brown) and 2 (blue) of sequence set I, the fail-

ure rate (gray) and the joint probability of replaying both sequences (silver) on the number of

training episodes. Each episode refers to a set of ten sequences, where each sequence is picked

from the set {s1, s2} with relative frequencies p1 = 0.2 (brown dotted horizontal line) and p2 = 1

− p1 = 0.8 (blue dotted horizontal line), respectively. Noise parameters: σ = 20 pA, c = 1.

(EPS)

S6 Fig. Spiking activity (top) and membrane potentials (bottom) at the end of the training

and during replay. A,C) During training (left), the network is exposed to repeated presenta-

tions of sequence 1 {A, F, B, D} and sequence 2 {A, F, C, E} (sequence set I) with training fre-

quencies p1 = 0.4 and p2 = 0.6, respectively. Here, only the responses to a single presentation of

sequence 1 (black triangles in panel A) are shown at the end of the training period (after 20 epi-

sodes). C,D) Autonomous replay of sequence 1 in response to activation of sequence element

“A” (black triangle in panel C). For clarity, panels A and B show only a small fraction of neu-

rons in each population. Traces in panels C and D depict membrane potentials of two neurons

in populations “B” (brown) and “C” (blue), participating in sequences 1 and 2, respectively.

During replay, neurons are subject to correlated background noise (σ = 26 pA, c = 1). The

resulting membrane potential fluctuations are however small and barely visible in panel D, due

to the large hyperpolarizations caused by the global inhibitory feedback. Small bars in panels C

and D depict somatic spikes (threshold crossings). In panel D, neurons in both populations

“B” (brown) and “C” (blue) generate dAPs (predictions) at about 75ms in response to the

ambiguous history “A” and “F”. The voltage of the neuron in population “B” (brown) reaches

the spike threshold θE (dotted line) first, generates a somatic spike (brown bar), and contrib-

utes to the inhibitory feedback leading to the fast and strong hyperpolarization of the neuron

in population “C” (blue), and all other excitatory neurons in the network (not shown here).

(EPS)
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39. Song S, Sjöström P, Reigl M, Nelson S, Chklovskii D. Highly nonrandom features of synaptic connectiv-

ity in local cortical circuits. PLOS Biol. 2005; 3(3):e68. https://doi.org/10.1371/journal.pbio.0030068

PMID: 15737062

40. Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual

cortex. Nat Neurosci. 2009; 12:70–76. Available from: https://doi.org/10.1038/nn.2232 PMID: 19029885

PLOS COMPUTATIONAL BIOLOGY Probabilistic sequence replay in spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010989 May 2, 2023 29 / 31

https://doi.org/10.1016/j.neunet.2019.08.002
https://doi.org/10.1016/j.neunet.2019.08.002
http://www.ncbi.nlm.nih.gov/pubmed/31450073
https://doi.org/10.1162/neco.2008.02-07-474
http://www.ncbi.nlm.nih.gov/pubmed/18439141
https://doi.org/10.1162/neco.2008.05-07-525
http://www.ncbi.nlm.nih.gov/pubmed/18439140
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
https://doi.org/10.1371/journal.pcbi.1002596
https://doi.org/10.1371/journal.pcbi.1002596
http://www.ncbi.nlm.nih.gov/pubmed/23133368
https://doi.org/10.1371/journal.pcbi.1003428
https://doi.org/10.1371/journal.pcbi.1003428
http://www.ncbi.nlm.nih.gov/pubmed/24453955
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1162/089976699300016179
http://www.ncbi.nlm.nih.gov/pubmed/10490941
https://doi.org/10.1023/a:1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1016/j.neuron.2012.06.029
http://www.ncbi.nlm.nih.gov/pubmed/22841308
https://doi.org/10.1038/ncomms8169
http://www.ncbi.nlm.nih.gov/pubmed/25994554
https://doi.org/10.1103/physrevlett.94.238103
https://doi.org/10.1103/physrevlett.94.238103
http://www.ncbi.nlm.nih.gov/pubmed/16090506
https://doi.org/10.1103/physrevresearch.2.023174
https://doi.org/10.1103/physrevresearch.2.023174
https://doi.org/10.1088/1367-2630/10/1/015007
https://doi.org/10.1038/nature06028
http://www.ncbi.nlm.nih.gov/pubmed/17700699
https://doi.org/10.1016/j.tins.2015.07.004
https://doi.org/10.1016/j.tins.2015.07.004
http://www.ncbi.nlm.nih.gov/pubmed/26275935
https://doi.org/10.1016/j.tins.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21439656
https://doi.org/10.1523/jneurosci.18-10-03870.1998
https://doi.org/10.1523/jneurosci.18-10-03870.1998
http://www.ncbi.nlm.nih.gov/pubmed/9570816
https://doi.org/10.1371/journal.pbio.0030068
http://www.ncbi.nlm.nih.gov/pubmed/15737062
https://doi.org/10.1038/nn.2232
http://www.ncbi.nlm.nih.gov/pubmed/19029885
https://doi.org/10.1371/journal.pcbi.1010989


41. Muller L, Destexhe A. Propagating waves in thalamus, cortex and the thalamocortical system: Experi-

ments and models. J Physiol. 2012 September; 106(5-6):222–238. Available from: https://doi.org/10.

1016/j.jphysparis.2012.06.005. PMID: 22863604

42. Denker M, Zehl L, Kilavik BE, Diesmann M, Brochier T, Riehle A, et al. LFP beta amplitude is linked to

mesoscopic spatio-temporal phase patterns. Sci Rep. 2018 March; 8(1):1–21. Available from: https://

doi.org/10.1038/s41598-018-22990-7 PMID: 29581430

43. Zanos TP, Mineault PJ, Nasiotis KT, Guitton D, Pack CC. A Sensorimotor Role for Traveling Waves in

Primate Visual Cortex. Neuron. 2015 February; 85(3):615–627. Available from: https://doi.org/10.1016/

j.neuron.2014.12.043 PMID: 25600124

44. Davis ZW, Muller L, Martinez-Trujillo J, Sejnowski T, Reynolds JH. Spontaneous travelling cortical

waves gate perception in behaving primates. Nature. 2020; 587(7834):432–436. https://doi.org/10.

1038/s41586-020-2802-y PMID: 33029013
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