001007199 001__ 1007199
001007199 005__ 20231027114403.0
001007199 0247_ $$2doi$$a10.1002/mds.29397
001007199 0247_ $$2ISSN$$a0885-3185
001007199 0247_ $$2ISSN$$a1531-8257
001007199 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01978
001007199 0247_ $$2pmid$$a37027459
001007199 0247_ $$2WOS$$aWOS:000989750000001
001007199 037__ $$aFZJ-2023-01978
001007199 082__ $$a610
001007199 1001_ $$00000-0002-8165-5898$$aTraschütz, Andreas$$b0
001007199 245__ $$aAutosomal Recessive Cerebellar Ataxias in Europe: Frequency, Onset, and Severity in 677 Patients
001007199 260__ $$aNew York, NY$$bWiley$$c2023
001007199 3367_ $$2DRIVER$$aarticle
001007199 3367_ $$2DataCite$$aOutput Types/Journal article
001007199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692953375_13854
001007199 3367_ $$2BibTeX$$aARTICLE
001007199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007199 3367_ $$00$$2EndNote$$aJournal Article
001007199 520__ $$aProgress in next-generation sequencing has led to an explosion of novel genes and phenotypes of autosomal recessive cerebellar ataxias (ARCAs) in the last decade, with >170 recessive conditions manifesting with ataxia identified.1 With large-scale natural history and mechanistic treatment trials on the horizon for many ARCAs, up-to-date knowledge is required not only on relative frequencies but also on real-world age and disease severity distributions as key information for trial design planning and recruitment. In this multicenter study, we provide data on the relative frequency of ARCAs in Europe, delineate the spectrum of age at disease onset, and present real-world data on disease severity distributions of patients with ARCA that help to inform future trial planning.
001007199 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001007199 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007199 7001_ $$0P:(DE-HGF)0$$aAdarmes-Gomez, Astrid D.$$b1
001007199 7001_ $$0P:(DE-HGF)0$$aAnheim, Mathieu$$b2
001007199 7001_ $$0P:(DE-HGF)0$$aBaets, Jonathan$$b3
001007199 7001_ $$0P:(DE-HGF)0$$aFalkenburger, Björn H.$$b4
001007199 7001_ $$0P:(DE-HGF)0$$aGburek-Augustat, Janina$$b5
001007199 7001_ $$0P:(DE-HGF)0$$aDoss, Sarah$$b6
001007199 7001_ $$00000-0002-7618-2336$$aKamm, Christoph$$b7
001007199 7001_ $$0P:(DE-HGF)0$$aKlivenyi, Peter$$b8
001007199 7001_ $$00000-0002-1808-2134$$aGrobe-Einsler, Marcus$$b9
001007199 7001_ $$0P:(DE-HGF)0$$aKlopstock, Thomas$$b10
001007199 7001_ $$0P:(DE-Juel1)131622$$aMinnerop, Martina$$b11$$ufzj
001007199 7001_ $$00000-0002-3219-2284$$aMünchau, Alexander$$b12
001007199 7001_ $$0P:(DE-HGF)0$$aPane, Chiara$$b13
001007199 7001_ $$0P:(DE-HGF)0$$aRenaud, Mathilde$$b14
001007199 7001_ $$0P:(DE-HGF)0$$aSantorelli, Filippo M.$$b15
001007199 7001_ $$0P:(DE-HGF)0$$aSchöls, Ludger$$b16
001007199 7001_ $$0P:(DE-HGF)0$$aTimmann, Dagmar$$b17
001007199 7001_ $$0P:(DE-HGF)0$$aVielhaber, Stefan$$b18
001007199 7001_ $$0P:(DE-HGF)0$$aHaack, Tobias B.$$b19
001007199 7001_ $$0P:(DE-HGF)0$$avan de Warrenburg, Bart P.$$b20
001007199 7001_ $$0P:(DE-HGF)0$$aZanni, Ginevra$$b21
001007199 7001_ $$00000-0002-2280-7273$$aSynofzik, Matthis$$b22$$eCorresponding author
001007199 773__ $$0PERI:(DE-600)2041249-6$$a10.1002/mds.29397$$gp. mds.29397$$n6$$p1109-1112$$tMovement disorders$$v38$$x0885-3185$$y2023
001007199 8564_ $$uhttps://juser.fz-juelich.de/record/1007199/files/Movement%20Disorders%20-%202023%20-%20Trasch%20tz.pdf$$yOpenAccess
001007199 909CO $$ooai:juser.fz-juelich.de:1007199$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131622$$aForschungszentrum Jülich$$b11$$kFZJ
001007199 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001007199 9141_ $$y2023
001007199 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001007199 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001007199 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-11$$wger
001007199 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001007199 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007199 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
001007199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOVEMENT DISORD : 2022$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
001007199 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOVEMENT DISORD : 2022$$d2023-10-24
001007199 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001007199 980__ $$ajournal
001007199 980__ $$aVDB
001007199 980__ $$aUNRESTRICTED
001007199 980__ $$aI:(DE-Juel1)INM-1-20090406
001007199 9801_ $$aFullTexts