001007204 001__ 1007204
001007204 005__ 20250129092509.0
001007204 037__ $$aFZJ-2023-01983
001007204 041__ $$aEnglish
001007204 1001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b0$$eCorresponding author
001007204 1112_ $$aDPG Frühjahrstagung SKM$$cDresden$$d2023-03-26 - 2023-03-31$$wGermany
001007204 245__ $$aPhysical Integration of Cryogenic Control Electronics Togetherwith a Spin Qubit Sample at mK Temperatures
001007204 260__ $$c2023
001007204 3367_ $$033$$2EndNote$$aConference Paper
001007204 3367_ $$2DataCite$$aOther
001007204 3367_ $$2BibTeX$$aINPROCEEDINGS
001007204 3367_ $$2DRIVER$$aconferenceObject
001007204 3367_ $$2ORCID$$aLECTURE_SPEECH
001007204 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1700575456_29049$$xAfter Call
001007204 520__ $$aA universal quantum computer requires the control and read out of millions of physical quantum bits (qubits). Due to wiring limitation in current state-of-the-art dilution refrigerators scaling up to millions of qubits with room-temperature electronics is challenging. Integrated Circuits (ICs) operating next to the qubits will help solving this scalability problem but require novel approaches for cryogenic circuits. This talk will focus on the physical design layer of the integration of a custom-designed 65nm CMOS low-power digital to analog converter(DAC) for qubit bias together with a spin qubit sample. In total, eight DAC channels are integrated at the mixing chamber stage of a dilution refrigerator and are operated at milli-kelvin temperatures. Additionally, engineering aspects regarding the sample space setup, cryostat wiring, and the tight density are pointed out.
001007204 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001007204 7001_ $$0P:(DE-Juel1)174088$$aOtten, Rene$$b1
001007204 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b2
001007204 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b3
001007204 909CO $$ooai:juser.fz-juelich.de:1007204$$pVDB
001007204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b0$$kFZJ
001007204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174088$$aForschungszentrum Jülich$$b1$$kFZJ
001007204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
001007204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ
001007204 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001007204 9141_ $$y2023
001007204 920__ $$lyes
001007204 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001007204 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001007204 980__ $$aconf
001007204 980__ $$aVDB
001007204 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001007204 980__ $$aI:(DE-Juel1)PGI-11-20170113
001007204 980__ $$aUNRESTRICTED
001007204 981__ $$aI:(DE-Juel1)PGI-4-20110106