001     1007204
005     20250129092509.0
037 _ _ |a FZJ-2023-01983
041 _ _ |a English
100 1 _ |a Schreckenberg, Lea
|0 P:(DE-Juel1)180854
|b 0
|e Corresponding author
111 2 _ |a DPG Frühjahrstagung SKM
|c Dresden
|d 2023-03-26 - 2023-03-31
|w Germany
245 _ _ |a Physical Integration of Cryogenic Control Electronics Togetherwith a Spin Qubit Sample at mK Temperatures
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1700575456_29049
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a A universal quantum computer requires the control and read out of millions of physical quantum bits (qubits). Due to wiring limitation in current state-of-the-art dilution refrigerators scaling up to millions of qubits with room-temperature electronics is challenging. Integrated Circuits (ICs) operating next to the qubits will help solving this scalability problem but require novel approaches for cryogenic circuits. This talk will focus on the physical design layer of the integration of a custom-designed 65nm CMOS low-power digital to analog converter(DAC) for qubit bias together with a spin qubit sample. In total, eight DAC channels are integrated at the mixing chamber stage of a dilution refrigerator and are operated at milli-kelvin temperatures. Additionally, engineering aspects regarding the sample space setup, cryostat wiring, and the tight density are pointed out.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Otten, Rene
|0 P:(DE-Juel1)174088
|b 1
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 2
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
909 C O |o oai:juser.fz-juelich.de:1007204
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21