001007206 001__ 1007206
001007206 005__ 20240610121138.0
001007206 0247_ $$2doi$$a10.3389/fphy.2023.1084040
001007206 0247_ $$2Handle$$a2128/34397
001007206 0247_ $$2WOS$$aWOS:001000398600001
001007206 037__ $$aFZJ-2023-01985
001007206 082__ $$a530
001007206 1001_ $$0P:(DE-HGF)0$$aSkibiński, Roman$$b0
001007206 245__ $$aThe nucleon-induced deuteron breakup process as a laboratory for chiral dynamics
001007206 260__ $$aLausanne$$bFrontiers Media$$c2023
001007206 3367_ $$2DRIVER$$aarticle
001007206 3367_ $$2DataCite$$aOutput Types/Journal article
001007206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683719897_26001
001007206 3367_ $$2BibTeX$$aARTICLE
001007206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007206 3367_ $$00$$2EndNote$$aJournal Article
001007206 520__ $$aThe nucleon-induced deuteron breakup reaction is studied within the Faddeev approach at incoming nucleon laboratory energies of 135 and 200 MeV. The chiral semilocal momentum-space (SMS) potential developed up to N4LO+, supplemented by the N2LO three-nucleon interaction, is used. Our investigation is focused on the determination of theoretical uncertainties in a predicted cross section related to its dependence on the value of the cutoff parameter of the regulator. We also compare predictions based on the complete N2LO potential with those based on the two-nucleon force upgraded to the N4LO+ order and augmented with the N2LO three-nucleon force. In addition, we study the three-nucleon force effects predicted by this model of interaction. Our systematic study covers the entire kinematically allowed phase space; however, our main results are obtained when additional restrictions on energies and cross section values are imposed. In such a case, we observe that the dependence of the differential cross sections on the regulator cutoff is moderate at 135 MeV and much stronger at 200 MeV. For the latter energy, it can amount to up to 45% in specific kinematic configurations. Taking into account terms beyond, N2LO in a two-body interaction changes the cross section up to 20% (27%) at E = 135(200) MeV. The inclusion of the three-nucleon force leads to effects of approximately 27% at both energies. We illustrate these dependencies with a few examples of the exclusive cross section as a function of the arc length of the S-curve.
001007206 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001007206 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007206 7001_ $$0P:(DE-Juel1)131166$$aGolak, Jacek$$b1$$ufzj
001007206 7001_ $$0P:(DE-HGF)0$$aWitała, Henryk$$b2
001007206 7001_ $$0P:(DE-HGF)0$$aChahar, Vaibhav$$b3
001007206 7001_ $$0P:(DE-Juel1)131142$$aEpelbaum, Evgeny$$b4$$eCorresponding author$$ufzj
001007206 7001_ $$0P:(DE-Juel1)131273$$aNogga, Andreas$$b5$$ufzj
001007206 7001_ $$0P:(DE-HGF)0$$aSoloviov, Volodymyr$$b6
001007206 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2023.1084040$$gVol. 11, p. 1084040$$p1084040$$tFrontiers in physics$$v11$$x2296-424X$$y2023
001007206 8564_ $$uhttps://juser.fz-juelich.de/record/1007206/files/fphy-11-1084040.pdf$$yOpenAccess
001007206 909CO $$ooai:juser.fz-juelich.de:1007206$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131166$$aForschungszentrum Jülich$$b1$$kFZJ
001007206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131142$$aForschungszentrum Jülich$$b4$$kFZJ
001007206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131273$$aForschungszentrum Jülich$$b5$$kFZJ
001007206 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001007206 9141_ $$y2023
001007206 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007206 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2022$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:34:55Z
001007206 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:34:55Z
001007206 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-12T10:34:55Z
001007206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001007206 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001007206 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
001007206 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
001007206 9801_ $$aFullTexts
001007206 980__ $$ajournal
001007206 980__ $$aVDB
001007206 980__ $$aUNRESTRICTED
001007206 980__ $$aI:(DE-Juel1)IAS-4-20090406
001007206 980__ $$aI:(DE-Juel1)IKP-3-20111104
001007206 981__ $$aI:(DE-Juel1)IAS-4-20090406