001007217 001__ 1007217
001007217 005__ 20230711151751.0
001007217 0247_ $$2doi$$a10.1016/j.ynirp.2021.100053
001007217 0247_ $$2Handle$$a2128/34384
001007217 037__ $$aFZJ-2023-01989
001007217 082__ $$a610
001007217 1001_ $$0P:(DE-HGF)0$$aEke, Damian$$b0$$eCorresponding author
001007217 245__ $$aPseudonymisation of neuroimages and data protection: Increasing access to data while retaining scientific utility
001007217 260__ $$a[Amsterdam]$$bElsevier ScienceDirect$$c2021
001007217 3367_ $$2DRIVER$$aarticle
001007217 3367_ $$2DataCite$$aOutput Types/Journal article
001007217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683546706_21576
001007217 3367_ $$2BibTeX$$aARTICLE
001007217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007217 3367_ $$00$$2EndNote$$aJournal Article
001007217 520__ $$aFor a number of years, facial features removal techniques such as ‘defacing’, ‘skull stripping’ and ‘face masking/blurring’, were considered adequate privacy preserving tools to openly share brain images. Scientifically, these measures were already a compromise between data protection requirements and research impact of such data. Now, recent advances in machine learning and deep learning that indicate an increased possibility of re-identifiability from defaced neuroimages, have increased the tension between open science and data protection requirements. Researchers are left pondering how best to comply with the different jurisdictional requirements of anonymization, pseudonymisation or de-identification without compromising the scientific utility of neuroimages even further. In this paper, we present perspectives intended to clarify the meaning and scope of these concepts and highlight the privacy limitations of available pseudonymisation and de-identification techniques. We also discuss possible technical and organizational measures and safeguards that can facilitate sharing of pseudonymised neuroimages without causing further reductions to the utility of the data.
001007217 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001007217 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
001007217 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
001007217 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
001007217 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007217 7001_ $$0P:(DE-HGF)0$$aAasebø, Ida E. J.$$b1
001007217 7001_ $$0P:(DE-HGF)0$$aAkintoye, Simisola$$b2
001007217 7001_ $$0P:(DE-HGF)0$$aKnight, William$$b3
001007217 7001_ $$0P:(DE-HGF)0$$aKarakasidis, Alexandros$$b4
001007217 7001_ $$0P:(DE-HGF)0$$aMikulan, Ezequiel$$b5
001007217 7001_ $$0P:(DE-HGF)0$$aOchang, Paschal$$b6
001007217 7001_ $$0P:(DE-HGF)0$$aOgoh, George$$b7
001007217 7001_ $$0P:(DE-HGF)0$$aOostenveld, Robert$$b8
001007217 7001_ $$0P:(DE-HGF)0$$aPigorini, Andrea$$b9
001007217 7001_ $$0P:(DE-HGF)0$$aStahl, Bernd Carsten$$b10
001007217 7001_ $$0P:(DE-HGF)0$$aWhite, Tonya$$b11
001007217 7001_ $$0P:(DE-Juel1)145394$$aZehl, Lyuba$$b12
001007217 773__ $$0PERI:(DE-600)3074092-7$$a10.1016/j.ynirp.2021.100053$$gVol. 1, no. 4, p. 100053 -$$n4$$p100053 -$$tNeuroimage: reports$$v1$$x2666-9560$$y2021
001007217 8564_ $$uhttps://juser.fz-juelich.de/record/1007217/files/1-s2.0-S2666956021000519-main.pdf$$yOpenAccess
001007217 909CO $$ooai:juser.fz-juelich.de:1007217$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001007217 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007217 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-14T14:44:17Z
001007217 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-14T14:44:17Z
001007217 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007217 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-12-14T14:44:17Z
001007217 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-16
001007217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
001007217 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-16
001007217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145394$$aForschungszentrum Jülich$$b12$$kFZJ
001007217 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001007217 920__ $$lyes
001007217 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001007217 980__ $$ajournal
001007217 980__ $$aVDB
001007217 980__ $$aUNRESTRICTED
001007217 980__ $$aI:(DE-Juel1)INM-1-20090406
001007217 980__ $$aOPENSCIENCE
001007217 9801_ $$aFullTexts