001007309 001__ 1007309
001007309 005__ 20231215104945.0
001007309 0247_ $$2doi$$a10.3389/fphy.2023.1175317
001007309 0247_ $$2Handle$$a2128/34383
001007309 0247_ $$2WOS$$aWOS:001000401700001
001007309 037__ $$aFZJ-2023-02001
001007309 082__ $$a530
001007309 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj
001007309 245__ $$aA spin model for intrinsic antiferromagnetic skyrmions on a triangular lattice
001007309 260__ $$aLausanne$$bFrontiers Media$$c2023
001007309 3367_ $$2DRIVER$$aarticle
001007309 3367_ $$2DataCite$$aOutput Types/Journal article
001007309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683546586_21350
001007309 3367_ $$2BibTeX$$aARTICLE
001007309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007309 3367_ $$00$$2EndNote$$aJournal Article
001007309 520__ $$aSkyrmions are prospected as the potential future of data storage due to their topologically protected spin structures. However, traditional ferromagnetic (FM) skyrmions experience deflection when driven with an electric current, hindering their usage in spintronics. Antiferromagnetic (AFM) skyrmions, consisting of two FM solitons coupled antiferromagnetically, are predicted to have zero Magnus force, making them promising candidates for spintronic racetrack memories. Currently, they have been stabilized in synthetic AFM structures, i.e., multilayers hosting FM skyrmions, which couple antiferromagnetically through a non-magnetic spacer, while recent first-principle simulations predict their emergence in an intrinsic form, within a row-wise AFM single monolayer of Cr deposited on a PdFe bilayer grown on Ir (111) surfaces. The latter material forms a triangular lattice, where single and interlinked AFM skyrmions can be stabilized. Here, we explore the minimal Heisenberg model, enabling the occurrence of such AFM solitons and the underlying phase diagrams by accounting for the interplay between the Dzyaloshinskii–Moriya and Heisenberg exchange interactions, as well as the magnetic anisotropy and impact of the magnetic field. By providing the fundamental basis to identify and understand the behavior of intrinsic AFM skyrmions, we anticipate our model to become a powerful tool for exploring and designing new topological magnetic materials to conceptualize devices for AFM spintronics.
001007309 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001007309 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007309 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b1$$ufzj
001007309 7001_ $$0P:(DE-HGF)0$$aAbusaa, Muayad$$b2
001007309 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj
001007309 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2023.1175317$$gVol. 11, p. 1175317$$p1175317$$tFrontiers in physics$$v11$$x2296-424X$$y2023
001007309 8564_ $$uhttps://juser.fz-juelich.de/record/1007309/files/fphy-11-1175317.pdf$$yOpenAccess
001007309 8767_ $$d2023-05-10$$eAPC$$jDeposit$$z2312 $
001007309 909CO $$ooai:juser.fz-juelich.de:1007309$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ
001007309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b1$$kFZJ
001007309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
001007309 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001007309 9141_ $$y2023
001007309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001007309 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007309 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:34:55Z
001007309 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:34:55Z
001007309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001007309 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
001007309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007309 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
001007309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2022$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-12T10:34:55Z
001007309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001007309 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001007309 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007309 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007309 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007309 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007309 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001007309 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001007309 9801_ $$aFullTexts
001007309 980__ $$ajournal
001007309 980__ $$aVDB
001007309 980__ $$aUNRESTRICTED
001007309 980__ $$aI:(DE-Juel1)IAS-1-20090406
001007309 980__ $$aI:(DE-Juel1)PGI-1-20110106
001007309 980__ $$aAPC