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For decades, several amino acid PET tracers have been used to opti-
mize diagnostics in patients with brain tumors. In clinical routine, the
most important clinical indications for amino acid PET in brain tumor
patients are differentiation of neoplasm from nonneoplastic etiologies,
delineation of tumor extent for further diagnostic and treatment plan-
ning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation
of treatment-related changes such as pseudoprogression or radiation
necrosis after radiation or chemoradiation from tumor progression at
follow-up, and assessment of response to anticancer therapy, includ-
ing prediction of patient outcome. This continuing education article
addresses the diagnostic value of amino acid PET for patients with
either glioblastoma ormetastatic brain cancer.
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Contrast-enhanced anatomic MRI is the diagnostic method of
choice for patients with primary (gliomas) and secondary (brain
metastases) brain cancer because of excellent soft-tissue contrast,
high spatial resolution, and widespread availability (1,2). Ana-
tomic MRI is also an essential component of almost all clinical
trials on brain tumor patients, based on its ability to generate sur-
rogate endpoints (e.g., MRI findings consistent with complete or
partial response or progressive disease) that can be correlated with
progression-free and overall survival. On the other hand, its specifi-
city for tumor tissue is suboptimal, resulting in challenges in distin-
guishing cancer from nonneoplastic lesions at initial presentation;
delineating tumor extent, especially in nonenhancing tumors; and
differentiating treatment-related changes from tumor relapse (1,3–8).

Irrespective of a continuously expanding number of advanced MRI
sequences, other modalities—especially PET using multiple radiola-
beled molecules—have been evaluated over the past few decades to
overcome these limitations of anatomic MRI. In particular, the PET
task force of the Response Assessment in Neuro-Oncology Working
Group emphasized that the additional clinical value of amino acid
PET for glioma patients, compared with anatomic MRI, is outstand-
ing and justifies its widespread clinical use at all disease stages (9). In
addition, the PET/Response Assessment in Neuro-Oncology Working
Group has published recommendations for using amino acid PET in
patients with brain metastases (10).
Although various new applications have been addressed recently

using PET techniques (e.g., noninvasive grading in primary brain
tumors characterized according to older classifications of the World
Health Organization [WHO] (11), noninvasive prediction of molec-
ular markers, diagnosis of malignant progression, and the prognos-
tic value of PET in patients with newly diagnosed and untreated
brain tumors), for neurooncologists and medical professionals
involved in the care of patients with brain tumors, the following
PET applications are of particular clinical interest: differentiation
of neoplasms from nonneoplastic etiologies, delineation of tumor
extent for further diagnostic and treatment management, differenti-
ation of treatment-related changes such as pseudoprogression or
radiation necrosis after radiation or chemoradiation from tumor
relapse at follow-up, and prediction of response to anticancer ther-
apy as evaluated by patient outcome. This continuing education
article addresses the diagnostic value of amino acid PET for these
clinically highly relevant indications in patients with either glio-
blastoma or metastatic brain cancer.

RADIOLABELED AMINO ACIDS

The most widely used amino acid tracers for PET to date are
O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET), 11C-methyl-L-methionine
(11C-MET), and 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (18F-
FDOPA). Their uptake is facilitated by large neutral amino acid
transporters of the L-type (LAT) in gliomas and brain meta-
stases (i.e., subtypes LAT1 and LAT2), which are regularly
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overexpressed in both brain tumor types (1,12–15). Most early
amino acid PET studies used 11C-MET, but the short half-life of
20min imposes logistic challenges, necessitating an on-site cyclo-
tron (16,17). The advent of 18F-labeled radiolabeled amino acids
with a considerably longer half-life of 110min allowed transport
to other neurooncologic centers. For example, 18F-FET was devel-
oped almost 25 y ago, and its use has multiplied (16,18,19), result-
ing in 11C-MET replacement, especially in Europe (1). After being
moved by LAT transporters into neoplastic tissue, 18F-FET is not
metabolized (20), whereas 11C-MET shows incorporation into pro-
tein, participation in other metabolic pathways, or metabolic deg-
radation (21).

18F-FDOPA is another 18F-labeled amino acid analog initially
developed to evaluate dopamine synthesis in the basal ganglia and
has also increasingly been used for imaging brain tumors (22).
In the United States and Europe, 18F-FDOPA is approved for char-
acterizing presynaptic dopaminergic activity in patients with Par-
kinsonian syndromes, and in Europe 18F-FDOPA has also been
approved for imaging of brain tumors and various neuroendocrine
tumors. Notably, physiologic uptake of 18F-FDOPA in the stria-
tum may hamper its use in evaluating tumor extent (1,23). On the
other hand, uptake in the striatum can also be used as a reference
for qualitative (visual) analysis of tumor uptake.
Acquisition of dynamic amino acid PET data (predominantly

using the tracer 18F-FET) allows characterization of the temporal
pattern of tracer uptake by deriving a time–activity curve. Subse-
quently, qualitative and quantitative dynamic uptake parameters
such as the configuration of time–activity curves, time to peak,
and slope can be calculated for further data analysis to increase
diagnostic performance, such as for diagnosis of treatment-related
changes (24,25). Initial data suggest that the dynamic 18F-FDOPA
PET acquisition is also of value for differentiating glioma progres-
sion from treatment-related changes (26).
Although first used for brain tumor imaging in 1999 (27), the

synthetic amino acid analog anti-1-amino-3-18F-fluorocyclobutane-
1-carboxylic acid (18F-fluciclovine) has gained clinical interest, par-
ticularly for imaging of primary and secondary brain tumors in
recent years. Since this tracer was initially used primarily to diag-
nose prostate cancer recurrence (28), 18F-fluciclovine was approved
in the United States and Europe for evaluating recurrent prostate
cancer (29), but the tracer also received orphan drug status for gli-
oma imaging in the Unites States. Transport of 18F-fluciclovine is
mediated to some extent by LAT1 but predominantly by another
neutral amino acid transporter, the neutral alanine, serine, cysteine
transporter 2, which is not expressed at the luminal side of the
blood–brain barrier (30). In general, significantly higher tumor-
to-brain contrast is observed with 18F-fluciclovine than with the
established amino acid tracers (31), primarily because of the low
transport of 18F-fluciclovine through the intact blood–brain barrier.
Like 11C-MET, 18F-FET, and 18F-FDOPA, it appears that 18F-fluci-
clovine accumulates also in nonenhancing gliomas and identifies
infiltrating tumor areas that do not show contrast enhancement on
MRI (32,33).
In general, all radiolabeled amino acids exhibit relatively low

uptake in normal brain tissue, and brain tumors can easily be dis-
tinguished from the surrounding healthy-appearing brain tissue
with high contrast. Of note, the use of 18F-FDG—the most widely
applied PET tracer in oncology—in distinguishing tumor tissue
from normal tissue is limited by the physiologically increased rate
of glucose metabolism in the cerebral cortex. Therefore, in recent

years, radiolabeled amino acids have become the preferred PET
probes in neurooncology (1,9,10,34).

DIFFERENTIATION OF NEOPLASM FROM
NONNEOPLASTIC ETIOLOGIES

In general, neoplastic lesions such as glioblastoma or brain metas-
tases exhibit a considerably higher uptake of radiolabeled amino
acids than do nonneoplastic lesions, a factor that may be consid-
ered for differential diagnosis. A metaanalysis including more than
450 patients from 13 18F-FET PET studies yielded a pooled sensi-
tivity of 82% and specificity of 76% for diagnosing primary brain
tumors (35). In that study, most patients had gliomas (n 5 338;
84%) of various central nervous system (CNS) WHO grades. Eigh-
teen patients had a nonglial brain tumor (5%). Across all tumor
types, a mean tumor-to-brain ratio of 1.6 and a maximum tumor-to-
brain ratio of 2.1 best separated primary neoplastic lesions from non-
neoplastic lesions. A large single-center study including 393 patients
observed comparable diagnostic performance (36). In that study,
68 patients were diagnosed with glioblastoma (17%). Of note, in
that study, 18F-FET uptake was evaluated only visually by a single
nuclear medicine physician, and the results should be considered
with caution (37). Another study of 174 patients with newly diag-
nosed cerebral lesions suggestive of brain tumors reported a high
specificity (92%) but a lower sensitivity (57%) for the differentiation
of neoplastic lesions from nonneoplastic lesions using 18F-FET PET
(38). On the other hand, a maximum tumor-to-brain ratio of more
than 2.5 yielded a convincing positive predictive value of 98% for
tumor tissue. For 11C-MET PET, a series of 196 consecutive patients
revealed that differentiation between gliomas and nontumoral lesions
using a simple threshold was correct in 79% (39). Similar findings
were recently observed in 101 pretreatment patients (40).
Thus, amino acid PET adds valuable information for differential

diagnostics of suggestive CNS lesions for glial brain tumors, but neu-
ropathologic tissue evaluation remains mandatory in most patients to
provide a final diagnosis. Nevertheless, it should be kept in mind
that mild but increased amino acid tracer uptake may also occur—
although it is much less common—in nonneoplastic lesions (e.g.,
acute or subacute brain ischemia, brain abscess, inflammatory lesions
related to active multiple sclerosis, or status epilepticus) (41–46).
In addition, 20%–30% of patients with gliomas of CNS WHO grade
2 with an isocitrate dehydrogenase (IDH) gene mutation exhibit no
amino acid uptake (42,43,47,48).
A subgroup of patients who had brain lesions without 18F-FET

uptake but with MRI findings suggestive of CNS WHO grade 2
gliomas (i.e., hyperintense T2/fluid-attenuated inversion recovery
[FLAIR] signal without contrast enhancement) may even show
photopenic defects on 18F-FET PET with uptake visually lower than
the healthy background uptake but harbor gliomas of higher CNS
WHO grades (49). This phenomenon has also been described for the
radiolabeled amino acids 11C-MET and 18F-FDOPA (50).
In most patients with metastatic brain cancer, even small brain

metastases (maximal diameter, ,5mm) can easily be delineated
by contrast-enhanced anatomic MRI. In addition, the increased
expression of amino acid transporters in brain metastases is a com-
pelling target for amino acid PET (13). For example, in 30 patients
with 45 newly diagnosed brain metastases from cancer of different
origins, approximately 90% of the lesions had a 18F-FET uptake
of 1.6 or more compared with the healthy-appearing contralateral
hemisphere. In particular, in all lesions with a diameter larger
than 1 cm, the 18F-FET uptake was pathologically increased (51).
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A similar dependence on lesion size was observed in patients with
newly diagnosed brain metastases evaluated using 18F-fluciclovine
PET (52). Nevertheless, the most commonly used imaging modality
for brain metastasis detection remains thin-slice contrast-enhanced
MRI, which has the highest sensitivity for this application.
In contrast to extracranial cancer, the value of 18F-FDG PET for

brain metastasis detection appears to be limited. For example, a
metaanalysis revealed 18F-FDG PET to have a cumulative sensi-
tivity of only 21% for diagnosis of brain metastases secondary to
lung cancer (53).

DELINEATION OF TUMOR EXTENT

Regarding delineation of tumor extent in glioma patients, ana-
tomic MRI is particularly limited in its ability to identify none-
nhancing glioma subregions (1). Radiolabeled amino acids for PET
can pass the intact blood–brain barrier (54,55). Predominantly in
nonenhancing gliomas, several studies have spatially compared
amino acid tracer uptake with neuropathologic findings obtained by
stereotactic biopsy and shown that radiolabeled amino acids iden-
tify glioma extent more reliably than standard MRI (56–62). Fur-
thermore, in patients with an MRI-based suspicion of a CNS WHO
grade 2 glioma (typically a T2-hyperintense lesion without contrast
enhancement on MRI), amino acid PET parameters obtained from
both static and dynamic acquisitions correlated neuropathologically
with the most malignant tumor parts (56–62)—a finding that is of
considerable interest for prognostic evaluation and the planning of
diagnostic and therapeutic interventions (e.g., biopsy and target
volume definition for radiotherapy).
In terms of volumetric comparison of contrast enhancement with

the tumor volume obtained by amino acid PET, previous studies of
both newly diagnosed and recurrent IDH–wild-type glioblastomas
suggested that there are significant differences in the size, overlap,
and spatial correlation of tumor volumes (3,63,64), indicating that
conventional contrast-enhanced MRI considerably underestimates
the metabolically active tumor volume (Fig. 1). Consequently,
efforts have been initiated to evaluate whether an amino acid
PET–guided treatment may improve patient outcomes. Initial stud-
ies suggested that amino acid PET–based radiotherapy significantly
affects patient survival (65,66).
In contrast to gliomas, the size and volume of brain metastases

are usually well delineated on contrast-enhanced MRI because of
fewer infiltrative growth characteristics on a submillimeter level
(67). Thus, for biopsy or treatment planning, amino acid PET does

not add valuable information on extent, as reported for patients
with newly diagnosed gliomas (58,68).

DIFFERENTIATION OF TUMOR RELAPSE FROM
TREATMENT-RELATED CHANGES

After treatment for brain tumors, differentiation of treatment-
related changes from actual tumor relapse remains challenging
(1,4,8,69,70) and is of paramount clinical relevance, with consid-
erable impact on clinical management. For example, a recent retro-
spective study of 189 patients found that amino acid PET changed
clinical management in 53% of patients with suspected recurrent
disease (71). Erroneous interpretation of treatment-related changes
as tumor progression may lead to unnecessary and premature termi-
nation of an effective treatment option, with a subsequent potentially
negative impact on survival. Furthermore, the efficacy of the subse-
quent treatment (72) may be overestimated, generating misleading
results in studies evaluating recurrent treatment options (73).
In clinical routine, this differentiation is the most frequent indica-

tion for amino acid PET and is requested in almost 50% of glioma
patients (74). In patients with predominantly IDH–wild-type glio-
blastoma, high diagnostic accuracy has repeatedly been shown for
amino acid PET using 18F-FET and 18F-FDOPA in differentiating
between tumor progression and treatment-related changes that occur
early (i.e., pseudoprogression after chemoradiation plus temozolo-
mide within the first 3mo) or late (e.g., radiation necrosis, onset usu-
ally . 6mo after radiotherapy completion) (24,69,75–82). In these
studies, differentiation was correct 80%–90% of the time. For
11C-MET PET, diagnostic performance appears to be slightly lower,
with an accuracy of approximately 75% (83,84), most probably
related to a higher affinity of 11C-MET for inflammatory lesions
(85). A recent prospective study evaluated 18F-fluciclovine PET for
diagnosing pseudoprogression and provided 90% sensitivity and
83% specificity for this clinically relevant indication (86). Impor-
tantly, PET findings were validated neuropathologically in that study
in all patients (n 5 30).
In patients with brain metastases, radiosurgery has become an

indispensable and frequently used local treatment option (10,87).
Depending on the irradiated lesion volume and radiation dose, an
increased radiation necrosis rate has been reported in patients with
brain metastases treated by radiosurgery (88). For differentiation
of local radiation injury such as radiation necrosis from brain
metastasis relapse after radiosurgery, PET using 18F-FDOPA and
11C-MET has consistently demonstrated high sensitivity and speci-
ficity of approximately 80% (Fig. 2) (83,89–92). Similarly, 18F-
FET PET parameters derived from static and dynamic acquisitions
showed high sensitivity and specificity of 80%–90% for distinguish-
ing radiation-induced changes after radiosurgery from recurrent brain
metastases (25,93,94). A recent metaanalysis including 13 11C-MET,
18F-FET, or 18F-FDOPA PET studies with almost 400 patients
highlighted the added clinical value of amino acid PET for differenti-
ating treatment-related changes from brain metastasis relapse (95). In
that study, pooled sensitivity and specificity were 82% and 84%,
respectively.
In most of these studies, radiation-induced changes were distin-

guished from brain metastasis relapse solely on the basis of a single
amino acid PET scan. A recent study evaluated serial amino acid
PET scans and suggested that stable 18F-FDOPA uptake over a long-
term follow-up (median, 18mo) identified radiation-induced changes
with a relatively high accuracy of 94% (96). 18F-FDOPA uptake did
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FIGURE 1. 18F-FET PET, contrast-enhanced MRI, and FLAIR MRI of
89-y-old patient with recurrent IDH–wild-type glioblastoma. Metabolically
active tumor as identified by increased uptake of 18F-FET (threshold of 1.6
based on mean tumor-to-brain ratio) is outlined and projected onto MR
images (red contour). Extent of metabolically active tumor on 18F-FET PET
exceeds contrast-enhancing tumor portion and shows considerable spa-
tial discrepancies from area of FLAIR hyperintensities. CE 5 contrast-
enhanced.
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not change significantly in radionecrotic lesions but did increase sig-
nificantly over time in patients with brain metastasis relapse.
Checkpoint inhibitor immunotherapy as a systemic treatment

option has considerable efficacy in patients with brain metastases,
showing intracranial objective response rates of almost 60% (97,98).
On the other hand, reactive changes on MRI may also occur after
these systemic treatment options and can also be challenging to dis-
tinguish from brain metastasis relapse. For example, pseudopro-
gression related to inflammation triggered by immune system
reactions may occur in patients with brain metastases treated with
immune checkpoint inhibitors using antibodies against cytotoxic
T-lymphocyte–associated antigen 4 (e.g., ipilimumab), programmed
death protein 1 (e.g., pembrolizumab and nivolumab), or programmed
cell death ligand 1 (e.g., atezolizumab). A pilot study highlighted the
potential of amino acid PET using 18F-FET to identify pseudopro-
gression in patients with melanoma brain metastases treated with
blockade of cytotoxic T-lymphocyte–associated antigen 4 (99). A
subsequent study confirmed the potential of amino acid PET in
patients undergoing immune checkpoint inhibition; pseudoprogres-
sion was detected in a higher number of patients with brain metastasis
secondary to lung cancer or melanoma (100).

ASSESSMENT OF TREATMENT RESPONSE

In glioma patients, changes in the extent of contrast enhancement
on MRI are typically used as an indicator of complete or partial
response or tumor progression (72,101). In addition, in patients trea-
ted with antiangiogenic agents for glioblastoma recurrence, an
increase in signal hyperintensity on T2 or FLAIR MRI sequences
was frequently used to diagnose nonenhancing tumor progression
(72). Nevertheless, these signal changes are unspecific and may be
related to perifocal edema, radiation injury, demyelination, inflam-
mation, or ischemia, hampering the distinction from nonenhancing
tumor (4,8,70). Alternative diagnostic methods such as amino acid
PET have been evaluated to improve treatment response assessment.
In glioblastoma patients, alkylating chemotherapy and antiangio-
genic therapy are frequently applied systemic treatment options.
For 11C-MET PET, a reliable response assessment to temozolomide

and nitrosourea-based chemotherapy has been demonstrated primarily
in glioblastoma patients at recurrence (102–105). Notably, meta-
bolic responders on 11C-MET PET had a significantly improved

outcome compared with metabolic nonresponders (102). Subse-
quently, 18F-FET PET has been used to evaluate the effects of
temozolomide in patients with CNS WHO grade 2 gliomas (106).
In metabolic responders, 18F-FET PET tumor volume reductions
after treatment initiation were observed considerably earlier than
volume reductions on FLAIR MRI. These findings were confirmed
by subsequent 18F-FET PET studies with more patients (107,108).
In patients with newly diagnosed IDH–wild-type glioblastoma,

prospective studies assessed the predictive value of early 18F-FET
uptake changes 6–8 wk after postoperative chemoradiation with
concomitant temozolomide relative to the baseline scan (109,110).
18F-FET PET responders with a decrease in metabolic activity as
assessed by tumor-to-brain ratios had significantly longer survival
than patients with stable or increasing tracer uptake after chemoradia-
tion. Similar findings were reported in newly diagnosed glioblastoma
patients early after initiating adjuvant temozolomide chemotherapy,
that is, after 2 cycles (111). An example for response assessment of
temozolomide chemotherapy used in a patient with a progressive
glioblastoma is shown in Figure 3.
According to current guidelines (112), lomustine-based chemo-

therapy is recommended for patients with CNS WHO grade 3 or 4
gliomas at recurrence, especially in Europe, where bevacizumab is
not approved in most countries. A recent study evaluated the new
occurrence of lesions on follow-up 18F-FET PET scans showing
pathologically increased metabolic activity remote from the tumor
at baseline in mostly glioblastoma patients undergoing lomustine-
based chemotherapy (113). In that study, the occurrence of these
distant and metabolically active hot spots on 18F-FET PET proved
to be the strongest predictor for nonresponse.
Furthermore, amino acid PET has been particularly evaluated in

the recurrence setting to assess response to antiangiogenic therapy
such as bevacizumab (114). In addition, 18F-FDOPA and 18F-FET
PET have been found useful for identifying pseudoresponse
(115–119). Moreover, 18F-FDOPA and 18F-FET Pet also seem
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FIGURE 2. A 68-y-old woman with brain metastasis secondary to renal
cell carcinoma who underwent anatomic MRI and 18F-FDOPA PET.
Twelve months after resection with postoperative radiosurgery, MRI sug-
gested local tumor recurrence. In contrast, 18F-FDOPA PET showed no
increased metabolic activity (mean tumor-to-brain ratio, 1.0) indicating
treatment-related changes such as radiation injury. Diagnosis was con-
firmed by subsequent neuroimaging 3 mo later, including amino acid PET
and anatomic MRI, demonstrating unchanged imaging findings and stable
clinical course without any therapeutic intervention. CE 5 contrast-
enhanced.
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FIGURE 3. A 45-y-old woman with IDH–wild-type glioblastoma who
underwent partial resection and radiotherapy with temozolomide plus
lomustine chemotherapy as first-line treatment. Twenty-two months later,
contrast-enhanced MRI and 18F-FET PET were consistent with tumor pro-
gression (left). For treatment, temozolomide chemotherapy was initiated.
After 3 cycles, clear decrease in maximum tumor-to-brain ratios (228%)
was observed, whereas MRI showed only slight decrease in contrast
enhancement (right). Metabolic response was associated with progression-
free survival of 6 mo after temozolomide initiation. CE 5 contrast-
enhanced; TBRmax 5 maximum tumor-to-brain ratio.
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helpful in predicting a favorable outcome in bevacizumab responders
(118–120). A prospective study suggested that 18F-FET PET is use-
ful for identifying metabolic responders to bevacizumab combined
with lomustine in newly diagnosed IDH–wild-type glioblastoma
patients early after treatment initiation (121). In that study, MRI
changes according to the criteria of the Response Assessment in
Neuro-Oncology Working Group (72) were not predictive of a
favorable outcome, whereas 18F-FET PET parameters significantly
predicted an overall survival of more than 9mo.
Another anticancer therapy option with considerable efficacy in

glioblastoma patients at recurrence is the multikinase inhibitor
regorafenib, which is characterized by pronounced antiangiogenic
activity (122). On the other hand, similar to glioma patients treated
with standard chemoradiation using alkylating agents, equivocal
MRI findings were also reported in glioma patients undergoing
regorafenib treatment at recurrence (123–125). It has been suggested
that amino acid PET using 18F-FET or 18F-FDOPA may help iden-
tify both treatment-related changes such as pseudoresponse or pseu-
doprogression and response to regorafenib (123–125).
The advent of immunotherapy using immune checkpoint inhibi-

tors and targeted therapy has dramatically improved the treatment
of extracranial cancer, especially in patients with skin, lung, or
breast cancer. Moreover, recent trials have shown that patients
with brain metastases may also benefit from these agents, espe-
cially when dual checkpoint blockade is applied (97,98). Similar
to the response assessment in glioma patients, initial studies sug-
gest that serial amino acid PET can potentially add valuable infor-
mation to anatomic MRI for the assessment of immunotherapy
effects. For example, a more recent study in 40 patients with more
than 100 lung cancer or melanoma brain metastases treated with
radiosurgery, checkpoint inhibitors, or combinations thereof evalu-
ated whether 18F-FET PET may provide important diagnostic
information on both response assessment and diagnosis of pseudo-
progression (100). In that study, metabolic responders had signifi-
cantly longer progression-free survival.
In addition to immune checkpoint blockade, targeted therapy

using small molecules has demonstrated activity against brain
metastases (126–128). The presence of predictive genetic alterations
such as mutation of epidermal growth factor receptor, translocation
of anaplastic lymphoma kinase or c-ROS oncogene 1, overexpres-
sion of human epidermal growth factor receptor 2, or mutation of
BRAF V600E is considered an essential prerequisite for a response
to targeted therapy options (129). Monitoring of metabolic activity
reduction in patients with brain metastasis secondary to non–small
cell lung cancer or melanoma treated with targeted therapies such
as inhibitors of BRAF kinase or epidermal growth factor receptor
as a sign of response appeared feasible using 18F-FET PET,
whereas findings on anatomic MRI remained unchanged (10,130).

SUMMARY AND OUTLOOK

The current literature provides strong evidence that amino acid
PET is of considerable clinical value for the most critical diagnos-
tic indications in neurooncology. PET using amino acid tracers
offers a variety of insights for the assessment of brain tumors,
with the potential to overcome the limitations of anatomic MRI.
The diagnostic improvement probably facilitates meaningful deci-
sion making and justifies more widespread use of this diagnostic
tool (9,131). Furthermore, the necessary PET infrastructure is
widely available, and the production of radiolabeled amino acids
is well established, with costs comparable to other tracers

routinely used in clinical practice. Moreover, additional costs for
amino acid PET can potentially be saved by the incurred costs of
less reliable diagnostic imaging techniques (132–136).
Clinicians will find amino acid PET to be an especially robust

and attractive approach for many indications, with the advantage
of easy scan reading. Importantly, most studies using amino acid
PET provide comparable results across different scanners, as is
also a consequence of international and interdisciplinary efforts
by major nuclear medicine and neurooncology societies regarding
standardization of amino acid PET acquisition and evaluation in
brain tumor imaging in adults and children (137,138).
Adding novel advanced MRI techniques (e.g., ultra-high-field

2-hydroxyglutarate spectroscopic MRI and chemical exchange satu-
ration transfer imaging) to amino acid PET has the potential to pro-
vide a more profound evaluation of biologic characteristics in
patients with glioblastoma or metastatic brain disease. The comple-
mentary information derived from these imaging techniques suggests
differential biologic information warranting further evaluation (139).
A methodologic innovation that may significantly alleviate

research in brain tumor patients is the increasing availability of
hybrid PET/MRI scanners, which enable time-saving simultaneous
acquisition of several PET and advanced MR parameters under the
same physiologic or pathophysiologic conditions. In addition, hybrid
PET/MRI provides practical advantages and is convenient for patients
such as children and individuals with a poor clinical condition. On
the other hand, initial research suggests that for frequently requested
indications for amino acid PET in clinical routine, such as differenti-
ating treatment-related changes from tumor relapse, there is no signif-
icant difference in diagnostic performance between simultaneous and
sequential acquisitions of PET and MRI (140).
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