001007332 001__ 1007332
001007332 005__ 20230929112529.0
001007332 0247_ $$2doi$$a10.3390/electronics12092144
001007332 0247_ $$2Handle$$a2128/34386
001007332 0247_ $$2WOS$$aWOS:000987253800001
001007332 037__ $$aFZJ-2023-02018
001007332 041__ $$aEnglish
001007332 082__ $$a530
001007332 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael I.$$b0$$eCorresponding author
001007332 245__ $$aTiN-NbN-TiN and Permalloy Nanostructures for Applications in Transmission Electron Microscopy
001007332 260__ $$aBasel$$bMDPI$$c2023
001007332 3367_ $$2DRIVER$$aarticle
001007332 3367_ $$2DataCite$$aOutput Types/Journal article
001007332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683612333_31150
001007332 3367_ $$2BibTeX$$aARTICLE
001007332 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007332 3367_ $$00$$2EndNote$$aJournal Article
001007332 520__ $$aWe fabricated superconducting and ferromagnetic nanostructures, which are intended for applications in transmission electron microscopy (TEM), in a commercial sample holder that can be cooled using liquid helium. Nanoscale superconducting quantum-interference devices (nanoSQUIDs) with sub-100 nm nanobridge Josephson junctions (nJJs) were prepared at a distance of ~300 nm from the edges of a 2 mm × 2 mm × 0.05 mm substrate. Thin-film TiN-NbN-TiN heterostructures were used to optimize the superconducting parameters and enhance the oxidation and corrosion resistance of nJJs and nanoSQUIDs. Non-hysteretic I(V) characteristics of nJJs, as well as peak-to-peak quantum oscillations in the V(B) characteristics of the nanoSQUIDs with an amplitude of up to ~20 µV, were obtained at a temperature ~5 K, which is suitable for operation in TEM. Electron-beam lithography, high-selectivity reactive ion etching with pure SF6 gas, and a naturally created undercut in the Si substrate were used to prepare nanoSQUIDs on a SiN membrane within ~500 nm from the edge of the substrate. Permalloy nanodots with diameters down to ~100 nm were prepared on SiN membranes using three nanofabrication methods. High-resolution TEM revealed that permalloy films on a SiN buffer have a polycrystalline structure with an average grain dimension of approximately 5 nm and a lattice constant of ~0.36 nm. The M(H) dependences of the permalloy films were measured and revealed coercive fields of 2 and 10 G at 300 and 5 K, respectively. These technologies are promising for the fabrication of superconducting electronics based on nJJs and ferromagnetic nanostructures for operation in TEM.
001007332 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001007332 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007332 7001_ $$0P:(DE-Juel1)198832$$aWilliams, Joshua$$b1$$ufzj
001007332 7001_ $$0P:(DE-Juel1)167381$$aLu, Penghan$$b2$$ufzj
001007332 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b3
001007332 773__ $$0PERI:(DE-600)2662127-7$$a10.3390/electronics12092144$$gVol. 12, no. 9, p. 2144 -$$n9$$p2144 -$$tElectronics$$v12$$x2079-9292$$y2023
001007332 8564_ $$uhttps://juser.fz-juelich.de/record/1007332/files/electronics-12-02144.pdf$$yOpenAccess
001007332 8767_ $$d2023-07-12$$eAPC$$jZahlung erfolgt
001007332 909CO $$ooai:juser.fz-juelich.de:1007332$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
001007332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198832$$aForschungszentrum Jülich$$b1$$kFZJ
001007332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b2$$kFZJ
001007332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
001007332 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001007332 9141_ $$y2023
001007332 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007332 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007332 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007332 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007332 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007332 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTRONICS-SWITZ : 2022$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-28T15:36:07Z
001007332 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-28T15:36:07Z
001007332 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-28T15:36:07Z
001007332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-24
001007332 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001007332 920__ $$lyes
001007332 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001007332 9801_ $$aFullTexts
001007332 980__ $$ajournal
001007332 980__ $$aVDB
001007332 980__ $$aUNRESTRICTED
001007332 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001007332 980__ $$aAPC