001007357 001__ 1007357
001007357 005__ 20240226075519.0
001007357 0247_ $$2Handle$$a2128/34387
001007357 037__ $$aFZJ-2023-02026
001007357 1001_ $$0P:(DE-Juel1)177058$$aWu, Jianxiao$$b0$$eCorresponding author$$ufzj
001007357 245__ $$aBrain Region-wise Connectivity-based Psychometric Prediction Framework, Interpretation, Replicability and Generalizability$$f - 2022-09-21
001007357 260__ $$c2022
001007357 300__ $$a50p
001007357 3367_ $$2DataCite$$aOutput Types/Dissertation
001007357 3367_ $$2ORCID$$aDISSERTATION
001007357 3367_ $$2BibTeX$$aPHDTHESIS
001007357 3367_ $$02$$2EndNote$$aThesis
001007357 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1683692173_17298
001007357 3367_ $$2DRIVER$$adoctoralThesis
001007357 502__ $$aDissertation, HHU, 2022$$bDissertation$$cHHU$$d2022
001007357 520__ $$aThe study of brain-behavior relationships is a fundamental aspect of neuroscience.Recently, it has become increasingly popular to investigate brain-behavior relationshipsby relating the interindividual variability in psychometric measure to the interindividualvariability in brain imaging data. In particular, prediction approaches withcross-validation can be useful for identifying generalizable brain-behavior relationshipsin a data-driven manner. Nevertheless, it remains to be ascertained what brain-behaviorrelationships can be interpreted from the prediction models, and how generalizable themodels are to fully new cohorts. In this work, we attempt to fill in the gap ofinterpretability by developing a region-wise connectivity-based psychometric prediction(CBPP) framework. This framework involves a region-wise approach where a predictionmodel is estimated and evaluated for each brain region. The prediction accuracy of eachregion-wise model is a direct indication of that brain region’s association with thepsychometric measure predicted. In study 1, we applied the framework to a range ofpsychometric variables from a large healthy cohort and demonstrated the helpfulness ofthe framework in constructing region-wise psychometric prediction profiles orpsychometric-wise prediction pattern across the brain. In study 2, we demonstrated theusefulness of the framework in assessing cross-cohort replicability and generalizability interms of brain-behavior relationships derived from the prediction models, instead of justbased on prediction accuracies. In study 3, we systematically examined existingpsychometric prediction studies, summarizing the trends in the field, calling for the useof large cohorts and external validation. Overall, our work suggested the importance ofinterpretability and generalizability for psychometric prediction, recommending the useof multiple large cohorts in evaluating the interpretability and generalizability.
001007357 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001007357 8564_ $$uhttps://juser.fz-juelich.de/record/1007357/files/PhD_Thesis_final.pdf$$yOpenAccess
001007357 909CO $$ooai:juser.fz-juelich.de:1007357$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177058$$aForschungszentrum Jülich$$b0$$kFZJ
001007357 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001007357 9141_ $$y2023
001007357 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007357 920__ $$lyes
001007357 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001007357 9801_ $$aFullTexts
001007357 980__ $$aphd
001007357 980__ $$aVDB
001007357 980__ $$aUNRESTRICTED
001007357 980__ $$aI:(DE-Juel1)INM-7-20090406