Home > Publications database > Development and implementation of an internal quality control sample to standardize oligomer-based diagnostics of Alzheimer's disease > print |
001 | 1007358 | ||
005 | 20240118202349.0 | ||
024 | 7 | _ | |a 10.3390/diagnostics13101702 |2 doi |
024 | 7 | _ | |a 2128/34517 |2 Handle |
024 | 7 | _ | |a 37238187 |2 pmid |
024 | 7 | _ | |a WOS:000998096700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-02027 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Bannach, Oliver |0 P:(DE-Juel1)157832 |b 0 |e Corresponding author |
245 | _ | _ | |a Development and implementation of an internal quality control sample to standardize oligomer-based diagnostics of Alzheimer's disease |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705583005_18373 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer’s disease (AD), soluble and toxic amyloid-β (Aβ) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aβ oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aβ oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aβ1–42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aβ1–42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods. |
536 | _ | _ | |a 5244 - Information Processing in Neuronal Networks (POF4-524) |0 G:(DE-HGF)POF4-5244 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Pils, Marlene |0 P:(DE-Juel1)171619 |b 1 |
700 | 1 | _ | |a Dybala, Alexandra |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rehn, Fabian |0 P:(DE-Juel1)190725 |b 3 |
700 | 1 | _ | |a Blömeke, Lara |0 P:(DE-Juel1)177730 |b 4 |
700 | 1 | _ | |a Bujnicki, Tuyen |0 P:(DE-Juel1)162212 |b 5 |
700 | 1 | _ | |a Kraemer-Schulien, Victoria Maria |0 P:(DE-Juel1)172001 |b 6 |
700 | 1 | _ | |a Hoyer, Wolfgang |0 P:(DE-Juel1)166306 |b 7 |
700 | 1 | _ | |a Riesner, Detlev |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 9 |
773 | _ | _ | |a 10.3390/diagnostics13101702 |g Vol. 13, no. 10, p. 1702 - |0 PERI:(DE-600)2662336-5 |n 10 |p 1702 - |t Diagnostics |v 13 |y 2023 |x 2075-4418 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007358/files/Invoice_2346664.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007358/files/Pils%20et%20al_Manuscript.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007358/files/diagnostics-13-01702.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1007358 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157832 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)190725 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)177730 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)162212 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)172001 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)132029 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5244 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-10 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-10 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-10 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-07-07T16:30:38Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-07-07T16:30:38Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-07-07T16:30:38Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b DIAGNOSTICS : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|