001007362 001__ 1007362
001007362 005__ 20240610121142.0
001007362 0247_ $$2doi$$a10.1093/nar/gkac1233
001007362 0247_ $$2ISSN$$a0305-1048
001007362 0247_ $$2ISSN$$a0301-5610
001007362 0247_ $$2ISSN$$a1362-4954
001007362 0247_ $$2ISSN$$a1362-4962
001007362 0247_ $$2Handle$$a2128/34449
001007362 0247_ $$2pmid$$a36629253
001007362 0247_ $$2WOS$$aWOS:000910085600001
001007362 037__ $$aFZJ-2023-02031
001007362 082__ $$a570
001007362 1001_ $$0P:(DE-Juel1)156351$$aRemes, Cristina$$b0$$eCorresponding author
001007362 245__ $$aTranslation initiation of leaderless and polycistronic transcripts in mammalian mitochondria
001007362 260__ $$aOxford$$bOxford Univ. Press$$c2023
001007362 3367_ $$2DRIVER$$aarticle
001007362 3367_ $$2DataCite$$aOutput Types/Journal article
001007362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684757290_6139
001007362 3367_ $$2BibTeX$$aARTICLE
001007362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007362 3367_ $$00$$2EndNote$$aJournal Article
001007362 520__ $$aThe synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5′ leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.
001007362 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001007362 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007362 7001_ $$0P:(DE-HGF)0$$aKhawaja, Anas$$b1$$eFirst author
001007362 7001_ $$aPearce, Sarah F$$b2
001007362 7001_ $$aDinan, Adam M$$b3
001007362 7001_ $$00000-0002-8555-0292$$aGopalakrishna, Shreekara$$b4
001007362 7001_ $$aCipullo, Miriam$$b5
001007362 7001_ $$aKyriakidis, Vasileios$$b6
001007362 7001_ $$aZhang, Jingdian$$b7
001007362 7001_ $$aDopico, Xaquin Castro$$b8
001007362 7001_ $$0P:(DE-Juel1)176889$$aYukhnovets, Olessya$$b9
001007362 7001_ $$00000-0001-8259-2545$$aAtanassov, Ilian$$b10
001007362 7001_ $$aFirth, Andrew E$$b11
001007362 7001_ $$aCooperman, Barry$$b12
001007362 7001_ $$00000-0002-2891-2840$$aRorbach, Joanna$$b13
001007362 773__ $$0PERI:(DE-600)1472175-2$$a10.1093/nar/gkac1233$$gVol. 51, no. 2, p. 891 - 907$$n2$$p891 - 907$$tNucleic acids research$$v51$$x0305-1048$$y2023
001007362 8564_ $$uhttps://juser.fz-juelich.de/record/1007362/files/Translation%20initiation%20-%20Fitter%20-%209.5.2023.pdf$$yOpenAccess
001007362 909CO $$ooai:juser.fz-juelich.de:1007362$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176889$$aForschungszentrum Jülich$$b9$$kFZJ
001007362 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001007362 9141_ $$y2023
001007362 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
001007362 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-18
001007362 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007362 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
001007362 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
001007362 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007362 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
001007362 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-02-17T18:55:29Z
001007362 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-02-17T18:55:29Z
001007362 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-02-17T18:55:29Z
001007362 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001007362 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCLEIC ACIDS RES : 2022$$d2023-10-21
001007362 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNUCLEIC ACIDS RES : 2022$$d2023-10-21
001007362 920__ $$lyes
001007362 9201_ $$0I:(DE-Juel1)IBI-6-20200312$$kIBI-6$$lZelluläre Strukturbiologie$$x0
001007362 9801_ $$aFullTexts
001007362 980__ $$ajournal
001007362 980__ $$aVDB
001007362 980__ $$aUNRESTRICTED
001007362 980__ $$aI:(DE-Juel1)IBI-6-20200312
001007362 981__ $$aI:(DE-Juel1)ER-C-3-20170113