001007373 001__ 1007373
001007373 005__ 20240712084505.0
001007373 0247_ $$2doi$$a10.1002/adma.202300872
001007373 0247_ $$2ISSN$$a0935-9648
001007373 0247_ $$2ISSN$$a1521-4095
001007373 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02038
001007373 0247_ $$2pmid$$a37147880
001007373 0247_ $$2WOS$$aWOS:001031871500001
001007373 037__ $$aFZJ-2023-02038
001007373 082__ $$a660
001007373 1001_ $$0P:(DE-Juel1)173073$$aKrückemeier, Lisa$$b0$$ufzj
001007373 245__ $$aQuantifying Charge Extraction and Recombination Using the Rise and Decay of the Transient Photovoltage of Perovskite Solar Cells
001007373 260__ $$aWeinheim$$bWiley-VCH$$c2023
001007373 3367_ $$2DRIVER$$aarticle
001007373 3367_ $$2DataCite$$aOutput Types/Journal article
001007373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696939782_316
001007373 3367_ $$2BibTeX$$aARTICLE
001007373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007373 3367_ $$00$$2EndNote$$aJournal Article
001007373 520__ $$aThe extraction of photogenerated charge carriers and the generation of a photovoltage belong to the fundamental functionalities of any solar cell. These processes happen not instantaneously but rather come with finite time constants, e.g., a time constant related to the rise of the externally measured open circuit voltage following a short light pulse. Herein, a new method to analyze transient photovoltage measurements at different bias light intensities combining rise and decay times of the photovoltage. The approach uses a linearized version of a system of two coupled differential equations that are solved analytically by determining the eigenvalues of a 2 × 2 matrix. By comparison between the eigenvalues and the measured rise and decay times during a transient photovoltage measurement, the rates of carrier recombination and extraction as a function of bias voltage are determined, and establish a simple link between their ratio and the efficiency losses in the perovskite solar cell.
001007373 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001007373 588__ $$aDataset connected to DataCite
001007373 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b1$$ufzj
001007373 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2
001007373 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$eCorresponding author
001007373 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202300872$$gp. 2300872$$n35$$p2300872$$tAdvanced materials$$v35$$x0935-9648$$y2023
001007373 8564_ $$uhttps://juser.fz-juelich.de/record/1007373/files/Advanced%20Materials%20-%202023%20-%20Kr%20ckemeier%20-%20Quantifying%20Charge%20Extraction%20and%20Recombination%20Using%20the%20Rise%20and%20Decay%20of%20the.pdf$$yOpenAccess
001007373 8767_ $$d2023-05-10$$eHybrid-OA$$jDEAL
001007373 909CO $$ooai:juser.fz-juelich.de:1007373$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001007373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173073$$aForschungszentrum Jülich$$b0$$kFZJ
001007373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b1$$kFZJ
001007373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
001007373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b3$$kFZJ
001007373 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001007373 9141_ $$y2023
001007373 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007373 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007373 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007373 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001007373 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
001007373 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007373 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger
001007373 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
001007373 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007373 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001007373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001007373 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
001007373 920__ $$lyes
001007373 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001007373 9801_ $$aAPC
001007373 9801_ $$aFullTexts
001007373 980__ $$ajournal
001007373 980__ $$aVDB
001007373 980__ $$aUNRESTRICTED
001007373 980__ $$aI:(DE-Juel1)IEK-5-20101013
001007373 980__ $$aAPC
001007373 981__ $$aI:(DE-Juel1)IMD-3-20101013