001007374 001__ 1007374
001007374 005__ 20240712112822.0
001007374 0247_ $$2doi$$a10.1002/adma.202300936
001007374 0247_ $$2ISSN$$a0935-9648
001007374 0247_ $$2ISSN$$a1521-4095
001007374 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02039
001007374 0247_ $$2pmid$$a37104167
001007374 0247_ $$2WOS$$aWOS:001016071500001
001007374 037__ $$aFZJ-2023-02039
001007374 082__ $$a660
001007374 1001_ $$0P:(DE-Juel1)187071$$aBorowec, Julian$$b0$$ufzj
001007374 245__ $$aCarbonization Temperature Dependent Electrical Properties of Carbon Nanofibers ‐ from Nanoscale to Macroscale
001007374 260__ $$aWeinheim$$bWiley-VCH$$c2023
001007374 3367_ $$2DRIVER$$aarticle
001007374 3367_ $$2DataCite$$aOutput Types/Journal article
001007374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1699250711_31207
001007374 3367_ $$2BibTeX$$aARTICLE
001007374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007374 3367_ $$00$$2EndNote$$aJournal Article
001007374 520__ $$aAn exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C-AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow. The network's homogeneity is underlined by the strong correlation of macroscopic conductivities, determined by the four-point-method, and microscopic results. Both, microscopic and macroscopic electrical properties, solely depend on the carbonization temperature and the exact resulting fiber structure. Strikingly, nanoscale high-resolution current maps of individual CNFs reveal a large highly resistive surface fraction, representing a clear limitation. Highly resistive surface domains are either attributed to disordered highly resistive carbon structures at the surface or the absence of electron percolation paths in the bulk volume. With increased carbonization temperature, the conductive surface domains grow in size resulting in a higher conductivity. This work contributes to existing microstructural models of CNFs by extending them by electrical properties, especially electron percolation paths.
001007374 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007374 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001007374 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x2
001007374 536__ $$0G:(GEPRIS)390919832$$aDFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x3
001007374 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007374 7001_ $$0P:(DE-Juel1)178824$$aSelmert, Victor$$b1
001007374 7001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b2
001007374 7001_ $$0P:(DE-Juel1)190220$$aFries, Kai$$b3
001007374 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b4
001007374 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b5
001007374 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6
001007374 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b7
001007374 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b8$$eCorresponding author
001007374 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202300936$$gp. 2300936$$n31$$p2300936$$tAdvanced materials$$v35$$x0935-9648$$y2023
001007374 8564_ $$uhttps://juser.fz-juelich.de/record/1007374/files/Advanced%20Materials%20-%202023%20-%20Borowec%20-%20Carbonization%E2%80%90Temperature%E2%80%90Dependent%20Electrical%20Properties%20of%20Carbon%20Nanofibers%20From.pdf$$yOpenAccess
001007374 8767_ $$d2023-05-10$$eHybrid-OA$$jDEAL
001007374 909CO $$ooai:juser.fz-juelich.de:1007374$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187071$$aForschungszentrum Jülich$$b0$$kFZJ
001007374 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)187071$$aRWTH Aachen$$b0$$kRWTH
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178824$$aForschungszentrum Jülich$$b1$$kFZJ
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b2$$kFZJ
001007374 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171715$$aRWTH Aachen$$b2$$kRWTH
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b4$$kFZJ
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b5$$kFZJ
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001007374 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b7$$kFZJ
001007374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b8$$kFZJ
001007374 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b8$$kRWTH
001007374 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007374 9141_ $$y2023
001007374 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007374 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007374 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007374 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001007374 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
001007374 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007374 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger
001007374 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
001007374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007374 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001007374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001007374 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
001007374 920__ $$lyes
001007374 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001007374 9801_ $$aAPC
001007374 9801_ $$aFullTexts
001007374 980__ $$ajournal
001007374 980__ $$aVDB
001007374 980__ $$aI:(DE-Juel1)IEK-9-20110218
001007374 980__ $$aAPC
001007374 980__ $$aUNRESTRICTED
001007374 981__ $$aI:(DE-Juel1)IET-1-20110218