001007380 001__ 1007380
001007380 005__ 20240712113126.0
001007380 0247_ $$2doi$$a10.1002/adfm.202300501
001007380 0247_ $$2ISSN$$a1616-301X
001007380 0247_ $$2ISSN$$a1057-9257
001007380 0247_ $$2ISSN$$a1099-0712
001007380 0247_ $$2ISSN$$a1616-3028
001007380 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02045
001007380 0247_ $$2WOS$$aWOS:000975115700001
001007380 037__ $$aFZJ-2023-02045
001007380 082__ $$a530
001007380 1001_ $$0P:(DE-Juel1)178791$$aChen, Yi-Hsuan$$b0
001007380 245__ $$aTowards All‐Solid‐State Polymer Batteries: Going Beyond PEO with Hybrid Concepts
001007380 260__ $$aWeinheim$$bWiley-VCH$$c2023
001007380 3367_ $$2DRIVER$$aarticle
001007380 3367_ $$2DataCite$$aOutput Types/Journal article
001007380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692961037_31910
001007380 3367_ $$2BibTeX$$aARTICLE
001007380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007380 3367_ $$00$$2EndNote$$aJournal Article
001007380 520__ $$aTo go beyond polyethylene oxide in lithium metal batteries, a hybrid polymer/oligomer cell design is presented, where an ester oligomer provides high ionic conductivity of 0.2 mS cm−1 at 40 °C within thicker composite cathodes with active mass loadings of up to 11 mg cm−2 (LiNbO3-coated) LiNi0.6Mn0.2Co0.2 (NMC622), while a 30 µm thin scaffold-supported polymer electrolyte affords mechanical stability. Corresponding discharge capacities of the hybrid cells exceed 170 mAh g−1 (11 mg cm−2) or 160 mAh g−1 (6 mg cm−2) at rates of either 0.1 or 0.25 C. Multilayer pouch cells are projected to enable energy densities of 235 Wh L−1 (6 mg cm−2) and even up to 356 Wh L−1 (11 mg cm−2), clearly superior to other reported polymer-based cell designs. Polyester electrolytes are environmentally benign and safer compared to common liquid electrolytes, while the straightforward synthesis and affordability of precursors render hybrid polyester electrolytes suitable candidates for future application in solid-state lithium metal batteries.
001007380 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001007380 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001007380 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x2
001007380 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007380 7001_ $$0P:(DE-Juel1)164855$$aLennartz, Peter$$b1
001007380 7001_ $$0P:(DE-Juel1)178047$$aLiu, Kun Ling$$b2
001007380 7001_ $$0P:(DE-Juel1)174519$$aHsieh, Yi-Chen$$b3
001007380 7001_ $$0P:(DE-Juel1)188525$$aScharf, Felix$$b4
001007380 7001_ $$0P:(DE-Juel1)191496$$aGuerdelli, Rayan$$b5$$ufzj
001007380 7001_ $$0P:(DE-Juel1)180325$$aBuchheit, Annika$$b6
001007380 7001_ $$0P:(DE-Juel1)166392$$aGrünebaum, Mariano$$b7
001007380 7001_ $$0P:(DE-Juel1)185886$$aKempe, Fabian$$b8
001007380 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b9
001007380 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b10$$eCorresponding author
001007380 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202300501$$gp. 2300501$$n32$$p2300501$$tAdvanced functional materials$$v33$$x1616-301X$$y2023
001007380 8564_ $$uhttps://juser.fz-juelich.de/record/1007380/files/Adv%20Funct%20Materials%20-%202023%20-%20Chen.pdf$$yOpenAccess
001007380 8564_ $$uhttps://juser.fz-juelich.de/record/1007380/files/Chen2023_accepted.pdf$$yOpenAccess
001007380 8767_ $$d2023-05-10$$eHybrid-OA$$jDEAL
001007380 909CO $$ooai:juser.fz-juelich.de:1007380$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178791$$aForschungszentrum Jülich$$b0$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164855$$aForschungszentrum Jülich$$b1$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178047$$aForschungszentrum Jülich$$b2$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188525$$aForschungszentrum Jülich$$b4$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191496$$aForschungszentrum Jülich$$b5$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180325$$aForschungszentrum Jülich$$b6$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166392$$aForschungszentrum Jülich$$b7$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185886$$aForschungszentrum Jülich$$b8$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b9$$kFZJ
001007380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b10$$kFZJ
001007380 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001007380 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001007380 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
001007380 9141_ $$y2023
001007380 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007380 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007380 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007380 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001007380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001007380 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-15
001007380 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007380 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-15$$wger
001007380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001007380 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001007380 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2023-10-24
001007380 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001007380 9801_ $$aAPC
001007380 9801_ $$aFullTexts
001007380 980__ $$ajournal
001007380 980__ $$aVDB
001007380 980__ $$aUNRESTRICTED
001007380 980__ $$aI:(DE-Juel1)IEK-12-20141217
001007380 980__ $$aAPC
001007380 981__ $$aI:(DE-Juel1)IMD-4-20141217