001007388 001__ 1007388
001007388 005__ 20240712113127.0
001007388 0247_ $$2doi$$a10.1016/j.est.2022.106190
001007388 0247_ $$2ISSN$$a2352-152X
001007388 0247_ $$2ISSN$$a2352-1538
001007388 0247_ $$2Handle$$a2128/34487
001007388 0247_ $$2WOS$$aWOS:000898536300002
001007388 037__ $$aFZJ-2023-02053
001007388 082__ $$a333.7
001007388 1001_ $$0P:(DE-HGF)0$$aKoltermann, Lucas$$b0$$eCorresponding author
001007388 245__ $$aPotential analysis of current battery storage systems for providing fast grid services like synthetic inertia – Case study on a 6 MW system
001007388 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001007388 3367_ $$2DRIVER$$aarticle
001007388 3367_ $$2DataCite$$aOutput Types/Journal article
001007388 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708521934_8381
001007388 3367_ $$2BibTeX$$aARTICLE
001007388 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007388 3367_ $$00$$2EndNote$$aJournal Article
001007388 520__ $$aLarge-scale battery energy storage systems (BESS) already play a major role in ancillary service markets worldwide. Batteries are especially suitable for fast response times and thus focus on applications with relatively short reaction times. While existing markets mostly require reaction times of a couple of seconds, this will most likely change in the future. During the energy transition, many conventional power plants will fade out of the energy system. Thereby, the amount of rotating masses connected to the power grid will decrease, which means removing a component with quasi-instantaneous power supply to balance out frequency deviations the millisecond they occur. In general, batteries are capable of providing power just as fast but the real-world overall system response time of current BESS for future grid services has only little been studied so far. Thus, the response time of individual components such as the inverter and the interaction of the inverter and control components in the context of a BESS are not yet known. We address this issue by measurements of a 6 MW BESS's inverters for mode changes, inverter power gradients and measurements of the runtime of signals of the control system. The measurements have shown that in the analyzed BESS response times of 175 ms to 325 ms without the measurement feedback loop and 450 ms to 715 ms for the round trip with feedback measurements are possible with hardware that is about five years old. The results prove that even this older components can exceed the requirements from current standards. For even faster future grid services like synthetic inertia, hardware upgrades at the measurement device and the inverters may be necessary.
001007388 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001007388 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007388 7001_ $$aDrenker, Karl Konstantin$$b1
001007388 7001_ $$aCeli Cortés, Mauricio Eduardo$$b2
001007388 7001_ $$aJacqué, Kevin$$b3
001007388 7001_ $$aFiggener, Jan$$b4
001007388 7001_ $$aZurmühlen, Sebastian$$b5
001007388 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b6
001007388 773__ $$0PERI:(DE-600)2826805-2$$a10.1016/j.est.2022.106190$$gVol. 57, p. 106190 -$$p106190$$tJournal of energy storage$$v57$$x2352-152X$$y2023
001007388 8564_ $$uhttps://juser.fz-juelich.de/record/1007388/files/23_JOU_Potential%20analysis%20of%20current%20battery%20storage%20systems%20for%20providing%20fast%20grid%20services%20like%20synthetic%20inertia_PAP_SM_IJE_LKL-1.pdf$$yRestricted
001007388 8564_ $$uhttps://juser.fz-juelich.de/record/1007388/files/2022_09_23_Momentanreserve_no_marks.pdf$$yPublished on 2022-12-01. Available in OpenAccess from 2024-12-01.$$zStatID:(DE-HGF)0510
001007388 909CO $$ooai:juser.fz-juelich.de:1007388$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b6$$kFZJ
001007388 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001007388 9141_ $$y2023
001007388 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001007388 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001007388 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001007388 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001007388 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENERGY STORAGE : 2022$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007388 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ ENERGY STORAGE : 2022$$d2023-10-26
001007388 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001007388 9801_ $$aFullTexts
001007388 980__ $$ajournal
001007388 980__ $$aVDB
001007388 980__ $$aI:(DE-Juel1)IEK-12-20141217
001007388 980__ $$aUNRESTRICTED
001007388 981__ $$aI:(DE-Juel1)IMD-4-20141217