001007405 001__ 1007405
001007405 005__ 20231027114404.0
001007405 0247_ $$2doi$$a10.1029/2022WR032430
001007405 0247_ $$2ISSN$$a0043-1397
001007405 0247_ $$2ISSN$$a1944-7973
001007405 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02061
001007405 0247_ $$2WOS$$aWOS:000952884600001
001007405 037__ $$aFZJ-2023-02061
001007405 082__ $$a550
001007405 1001_ $$00000-0002-6954-7341$$aWaldowski, Bastian$$b0$$eCorresponding author
001007405 245__ $$aEstimating Groundwater Recharge in Fully Integrated pde ‐Based Hydrological Models
001007405 260__ $$a[New York]$$bWiley$$c2023
001007405 3367_ $$2DRIVER$$aarticle
001007405 3367_ $$2DataCite$$aOutput Types/Journal article
001007405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689071679_32091
001007405 3367_ $$2BibTeX$$aARTICLE
001007405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007405 3367_ $$00$$2EndNote$$aJournal Article
001007405 520__ $$aGroundwater recharge is the main forcing of regional groundwater flow. In traditional partial‐differential‐equation (pde)‐based models that treat aquifers as separate compartments, groundwater recharge needs to be defined as a boundary condition or it is a coupling condition to other compartments. Integrated models that treat the vadose and phreatic zones as a continuum allow for a more sophisticated calculation of subsurface fluxes, as feedbacks between both zones are captured. However, they do not contain an explicit groundwater‐recharge term so it needs to be estimated by post‐processing. Groundwater recharge consists of changes in groundwater storage and of the flux crossing the water table, which can be calculated based on hydraulic gradients. We introduce a method to evaluate the change of groundwater storage by a time‐cumulative water balance over the depth section of water table fluctuations, avoiding the use of a specific yield. We demonstrate the approach first by a simple 1‐D vertical model that does not allow for lateral outflow and illustrates the ambiguity of computing groundwater recharge by different methods. We then apply the approach to a 3‐D model with a complex topography and subsurface structure. The latter example shows that groundwater recharge is highly variable in space and time with notable differences between regional and local estimates. Local heterogeneity of topography or subsurface properties results in complex redistribution patterns of groundwater. In fully integrated models, river‐groundwater exchange flow may severely bias the estimate of groundwater recharge. We, therefore, advise masking out groundwater recharge at river locations.
001007405 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001007405 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007405 7001_ $$0P:(DE-HGF)0$$aSánchez-León, Emilio$$b1
001007405 7001_ $$00000-0003-3509-4118$$aCirpka, Olaf A.$$b2
001007405 7001_ $$0P:(DE-HGF)0$$aBrandhorst, Natascha$$b3
001007405 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, Harrie-Jan$$b4
001007405 7001_ $$0P:(DE-HGF)0$$aNeuweiler, Insa$$b5
001007405 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2022WR032430$$gVol. 59, no. 3, p. e2022WR032430$$n3$$pe2022WR032430$$tWater resources research$$v59$$x0043-1397$$y2023
001007405 8564_ $$uhttps://juser.fz-juelich.de/record/1007405/files/Water%20Resources%20Research%20-%202023%20-%20Waldowski%20-%20Estimating%20Groundwater%20Recharge%20in%20Fully%20Integrated%20pde%E2%80%90Based%20Hydrological.pdf$$yOpenAccess
001007405 8564_ $$uhttps://juser.fz-juelich.de/record/1007405/files/recharge_paper_2.pdf$$yOpenAccess
001007405 909CO $$ooai:juser.fz-juelich.de:1007405$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ
001007405 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001007405 9141_ $$y2023
001007405 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
001007405 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007405 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-29$$wger
001007405 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
001007405 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007405 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2022$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001007405 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bWATER RESOUR RES : 2022$$d2023-10-24
001007405 920__ $$lyes
001007405 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001007405 980__ $$ajournal
001007405 980__ $$aVDB
001007405 980__ $$aUNRESTRICTED
001007405 980__ $$aI:(DE-Juel1)IBG-3-20101118
001007405 9801_ $$aFullTexts