001     1007405
005     20231027114404.0
024 7 _ |a 10.1029/2022WR032430
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02061
|2 datacite_doi
024 7 _ |a WOS:000952884600001
|2 WOS
037 _ _ |a FZJ-2023-02061
082 _ _ |a 550
100 1 _ |a Waldowski, Bastian
|0 0000-0002-6954-7341
|b 0
|e Corresponding author
245 _ _ |a Estimating Groundwater Recharge in Fully Integrated pde ‐Based Hydrological Models
260 _ _ |a [New York]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689071679_32091
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Groundwater recharge is the main forcing of regional groundwater flow. In traditional partial‐differential‐equation (pde)‐based models that treat aquifers as separate compartments, groundwater recharge needs to be defined as a boundary condition or it is a coupling condition to other compartments. Integrated models that treat the vadose and phreatic zones as a continuum allow for a more sophisticated calculation of subsurface fluxes, as feedbacks between both zones are captured. However, they do not contain an explicit groundwater‐recharge term so it needs to be estimated by post‐processing. Groundwater recharge consists of changes in groundwater storage and of the flux crossing the water table, which can be calculated based on hydraulic gradients. We introduce a method to evaluate the change of groundwater storage by a time‐cumulative water balance over the depth section of water table fluctuations, avoiding the use of a specific yield. We demonstrate the approach first by a simple 1‐D vertical model that does not allow for lateral outflow and illustrates the ambiguity of computing groundwater recharge by different methods. We then apply the approach to a 3‐D model with a complex topography and subsurface structure. The latter example shows that groundwater recharge is highly variable in space and time with notable differences between regional and local estimates. Local heterogeneity of topography or subsurface properties results in complex redistribution patterns of groundwater. In fully integrated models, river‐groundwater exchange flow may severely bias the estimate of groundwater recharge. We, therefore, advise masking out groundwater recharge at river locations.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sánchez-León, Emilio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cirpka, Olaf A.
|0 0000-0003-3509-4118
|b 2
700 1 _ |a Brandhorst, Natascha
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
700 1 _ |a Neuweiler, Insa
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1029/2022WR032430
|g Vol. 59, no. 3, p. e2022WR032430
|0 PERI:(DE-600)2029553-4
|n 3
|p e2022WR032430
|t Water resources research
|v 59
|y 2023
|x 0043-1397
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1007405/files/Water%20Resources%20Research%20-%202023%20-%20Waldowski%20-%20Estimating%20Groundwater%20Recharge%20in%20Fully%20Integrated%20pde%E2%80%90Based%20Hydrological.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1007405/files/recharge_paper_2.pdf
909 C O |o oai:juser.fz-juelich.de:1007405
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b WATER RESOUR RES : 2022
|d 2023-10-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21