001007411 001__ 1007411
001007411 005__ 20240712113127.0
001007411 0247_ $$2doi$$a10.1021/acsaem.3c00277
001007411 0247_ $$2Handle$$a2128/34488
001007411 0247_ $$2WOS$$aWOS:000971969400001
001007411 037__ $$aFZJ-2023-02066
001007411 082__ $$a540
001007411 1001_ $$0P:(DE-HGF)0$$aZhao, Tong$$b0
001007411 245__ $$aSynthesis-Controlled Cation Solubility in Solid Sodium Ion Conductors $Na_{2+x}Zr_{1–x}In_xCl_ 6$
001007411 260__ $$aWashington, DC$$bACS Publications$$c2023
001007411 3367_ $$2DRIVER$$aarticle
001007411 3367_ $$2DataCite$$aOutput Types/Journal article
001007411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685623441_28788
001007411 3367_ $$2BibTeX$$aARTICLE
001007411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007411 3367_ $$00$$2EndNote$$aJournal Article
001007411 520__ $$aMechanochemically synthesized sodium halide solid solutions with the general formula Na2+xZr1–xMxCl6, as a class of potential catholytes, show promising ionic transport in comparison to their parental materials such as Na3YCl6. However, the influence of subsequent heat treatment protocols on the structure and transport properties of these materials is still not fully understood. In this work, a series of Na2+xZr1–xInxCl6 solid solutions are prepared by ball milling with subsequent annealing at different temperatures. X-ray diffraction analyses show a full indium solubility in Na2+xZr1–xInxCl6 when synthesized at low temperatures and crystallizing in the P21/n phase. In contrast, at higher heat treatment temperatures, exsolution is observed as the indium-rich Na2+xZr1–xInxCl6 compound tends to partially transform to the trigonal P3̅1c phase. By assessing the ionic conductivity of the differently synthesized Na2+xZr1–xInxCl6 series, we can show the synergistic effect of the Na+/vacancy ratio and crystallinity on sodium ion transport in this class of materials.
001007411 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001007411 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007411 7001_ $$0P:(DE-HGF)0$$aSobolev, Alexander N.$$b1
001007411 7001_ $$0P:(DE-HGF)0$$aSchlem, Roman$$b2
001007411 7001_ $$0P:(DE-HGF)0$$aHelm, Bianca$$b3
001007411 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin$$b4
001007411 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5$$eCorresponding author
001007411 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.3c00277$$gVol. 6, no. 8, p. 4334 - 4341$$n8$$p4334 - 4341$$tACS applied energy materials$$v6$$x2574-0962$$y2023
001007411 8564_ $$uhttps://juser.fz-juelich.de/record/1007411/files/acsaem.3c00277.pdf$$yRestricted
001007411 8564_ $$uhttps://juser.fz-juelich.de/record/1007411/files/Revised_Manuscript.pdf$$yPublished on 2023-04-12. Available in OpenAccess from 2024-04-12.$$zStatID:(DE-HGF)0510
001007411 909CO $$ooai:juser.fz-juelich.de:1007411$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b4$$kFZJ
001007411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001007411 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001007411 9141_ $$y2023
001007411 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001007411 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001007411 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001007411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001007411 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001007411 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001007411 9801_ $$aFullTexts
001007411 980__ $$ajournal
001007411 980__ $$aVDB
001007411 980__ $$aUNRESTRICTED
001007411 980__ $$aI:(DE-Juel1)IEK-12-20141217
001007411 981__ $$aI:(DE-Juel1)IMD-4-20141217