001     1007411
005     20240712113127.0
024 7 _ |a 10.1021/acsaem.3c00277
|2 doi
024 7 _ |a 2128/34488
|2 Handle
024 7 _ |a WOS:000971969400001
|2 WOS
037 _ _ |a FZJ-2023-02066
082 _ _ |a 540
100 1 _ |a Zhao, Tong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Synthesis-Controlled Cation Solubility in Solid Sodium Ion Conductors $Na_{2+x}Zr_{1–x}In_xCl_ 6$
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685623441_28788
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mechanochemically synthesized sodium halide solid solutions with the general formula Na2+xZr1–xMxCl6, as a class of potential catholytes, show promising ionic transport in comparison to their parental materials such as Na3YCl6. However, the influence of subsequent heat treatment protocols on the structure and transport properties of these materials is still not fully understood. In this work, a series of Na2+xZr1–xInxCl6 solid solutions are prepared by ball milling with subsequent annealing at different temperatures. X-ray diffraction analyses show a full indium solubility in Na2+xZr1–xInxCl6 when synthesized at low temperatures and crystallizing in the P21/n phase. In contrast, at higher heat treatment temperatures, exsolution is observed as the indium-rich Na2+xZr1–xInxCl6 compound tends to partially transform to the trigonal P3̅1c phase. By assessing the ionic conductivity of the differently synthesized Na2+xZr1–xInxCl6 series, we can show the synergistic effect of the Na+/vacancy ratio and crystallinity on sodium ion transport in this class of materials.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sobolev, Alexander N.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schlem, Roman
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Helm, Bianca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kraft, Marvin
|0 P:(DE-Juel1)192207
|b 4
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acsaem.3c00277
|g Vol. 6, no. 8, p. 4334 - 4341
|0 PERI:(DE-600)2916551-9
|n 8
|p 4334 - 4341
|t ACS applied energy materials
|v 6
|y 2023
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/1007411/files/acsaem.3c00277.pdf
|y Restricted
856 4 _ |y Published on 2023-04-12. Available in OpenAccess from 2024-04-12.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1007411/files/Revised_Manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:1007411
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)192207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21