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Abstract 

The reduction of vibrational contributions to thermal transport and the search for material 

classes with intrinsically low lattice thermal conductivities are at the heart of thermoelectric 

research. Both engineering the heat transport of known thermoelectrics and searching for new 

material candidates is guided by understanding the physics of low thermal conduction. Spectral 

analytical models (e.g., the Callaway model) for propagating phonon transport have proved to 

be a powerful tool for interpreting experimental results and providing metrics for materials 

design. Now, however, it is known that another mechanism of phonon heat transport can occur 

in complex crystalline materials. Called diffusons, they describe the non-propagating atomic 

scale random-walk of thermal energy between energetically proximal phonon modes. While 

analytical models exist to describe both transport behaviors independently, an analytical model 

accounting for both transport channels simultaneously is necessary to interpret and design so-

called 2-channel thermal transport. In this work, we propose an analytical 2-channel transport 

model that partitions the vibrational density of states into two transport regimes and 

subsequently accounts for both transport mechanisms. The model is then used to explain the 

experimental thermal conductivities of the solid solution series Ag9-xGa1-xGexSe6. In this series, 

substitution leads to the stabilization of a highly vacant Ag+ substructure, which is expected to 

induce strong point-defect phonon scattering. While the propagating phonons are strongly 

scattered at low temperatures, the diffuson channel is apparently unaffected. By establishing 

materials design metrics for 2-channel thermal transport from analytical theory, experimental 

investigations of materials with astonishingly low lattice thermal conductivities can now be 

better guided and informed. 

Keywords: thermal transport, diffusons, argyrodites, two-channel transport, point defects, 

phonon engineering 
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1. Introduction  

Engineering the lattice thermal conductivity of a material has significant importance for 

thermoelectrics,[1–3] thermal barrier coatings[4,5] and, as recently suggested, potential thermal 

management of solid-state batteries.[6–9] For example, lowering the lattice thermal 

conductivity directly improves the materials thermoelectric conversion efficiency.[1,10–12] 

Consequently, extensive efforts have been made in the thermoelectrics community to find and 

engineer materials with ultra-low thermal conductivities.[1,13] Originating from these efforts, 

a multitude of materials have been reported that show thermal transport behavior that cannot be 

explained by the classical description of heat transport by propagating phonons.[6,14,15] 

Propagating phonons, as described by the phonon-gas model (e.g., the Callaway model), 

propagate according to their group velocity in a particle-like manner analogous to a 

gas.[1,16,17] Propagating phonon transport considerations run into limitations once the 

magnitude of thermal conduction gets so low that the scattering rates associated with the 

propagating modes correspond to phonon mean-free-paths on the order of interatomic 

distances,[18,19] causing the phonon wavevector to be no longer well-defined (the so-called 

Ioffe-Regel limit).[20,21]  

Materials reported to have ultra-low thermal conduction that cannot be explained only by this 

type of transport span a great variety of structures and compositions, e.g., 

Yb14(Mn,Mg)Sb11,[22] La2Zr2O7,[21] CsPbBr3,[17] BaAg2Te2[23] and LiS2.[24] Another 

material class showing similar thermal transport behavior are the argyrodites,[25] where a 

multitude of compositions have been investigated for their use as thermoelectric materials, e.g., 

Ag8GeSe6,[26,27] Ag9GaSe6,[28,29] Ag8SnSe6[30,31] and Cu7PSe6.[32]  

In these materials, especially at high temperatures, a fundamentally different description of 

thermal transport by phonons becomes necessary. Recently, we have suggested that the thermal 

transport of Ag8GeSe6 can be explained by the co-existance of propagating phonon modes 
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(phonon-gas model, propagons) and diffusons, a second type of phonon which does not 

propagate throughout the material and conducts heat diffusively.[27] 

This second phonon channel of thermal transport, i.e., by diffusons,[20] fundamentally 

describes the thermal energy exchange between energetically proximal phonon modes 

resembling an atomic scale random walk between oscillators.[14,17,20] The exchange of 

vibrational energy is facilitated by a combination of small interband spacings (i.e., the energy 

difference between two phonon modes) and/or strong linewidth broadening (through 

anharmonicity especially at elevated temperatures) resulting in a high degree of quasi-

degeneracy.[17,21] Consequently, significant diffuson contributions are found in materials with 

a large number of phonon modes in close energetic proximity (due to large complex unit cells, 

e.g., Yb14(Mg,Mn)Sb11[22]) or with strong linewidth broadening (e.g., CsPbBr3[17]). 

Often, even in ultra-low thermal conductivity materials, contributions from propagating phonon 

modes persist,[34,35] such that a model accounting for both transport processes becomes 

necessary. A theory accounting for both propagon (phonon-gas like) and diffuson transport in 

lattice dynamics calculations was recently developed by Simoncelli and coworkers[17,21] (and 

later extended by Hanus and coworkers[22]), and has since been applied to various 

materials,[34–36] including the Ag+ argyrodite Ag8GeSe6.[27]  

Given its strength in describing unintuitive thermal transport behavior, this expanded viewpoint 

of phonon character has sparked new interest in the thermal transport 

community.[14,17,22,27,37] Currently, the established 2-channel model[37] relies on lattice 

dynamical calculations, i.e., the phonon band structure as well as third (and higher) order force 

constants,[36] or molecular dynamics to distinguish propagons and diffusons[38,39] and to 

calculate the thermal transport contributions of both channels.[17,22,37] This makes assessing 

potential 2-channel transport in a material computationally expensive, especially for complex 

structures in which such transport is expected. Nevertheless, it was shown that an analytical 



 5 

approximation for the phonon lifetimes can be used to reduce the computational cost of 2-

channel modeling.[17,22] For computational and theoretical details of the 2-channel model, the 

reader is referred to the works by Simoncelli et al.,[17,21] Isaeva et al.,[35] Xia et al,[36] and 

Hanus et al.[22,37] 

Expanding on the analytical approximations introduced to the 2-channel model,[22] we propose 

a fully analytical, spectral 2-channel model combining the established models for propagating 

transport, i.e., the Callaway-model,[1,37] and diffuson transport (the random-walk diffusion 

model[14]), in a straightforward fashion. At the core of this new model is the partition of the 

density of states into propagon and diffuson transport regimes. The proposed analytical 2-

channel model is then utilized to investigate the thermal transport of the compositional series 

Ag9-xGa1-xGexSe6, which reveals tremendous differences in its low temperature thermal 

conductivity behavior throughout the various substitution steps. Our analysis shows that 

Ag9GaSe6 conducts heat in a similar fashion to Ag8GeSe6,[27] with large propagon 

contributions at the lowest temperatures before transitioning to diffuson-dominated transport at 

elevated temperatures.[27] In contradistinction, the solid solutions Ag9-xGa1-xGexSe6 show 

almost pure diffuson transport throughout the whole temperature range. This can be attributed 

to increased point-defect scattering of propagons, facilitated by the stabilization of the high-

temperature argyrodite phase, consisting of a highly vacant Ag+ substructure, to low 

temperatures.  

This work shows that a spectral thermal transport model is applicable and valuable even in the 

presence of strong diffuson contributions and 2-channel transport, where new material design 

metrics are needed. By introducing an analytical model to describe experimentally determined 

lattice thermal conductivities, we aim to make considerations of 2-channel transport readily 
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accessible to experimentalists, thereby supporting the understanding of ultra-low thermal 

conductivities in complex crystalline solids. 

2. Polymorphs of Ag9-xGa1-xGexSe6 and phase analysis 

Assessing and understanding the structure of a material is the first step in understanding all of 

its transport properties, including thermal transport.[1,16] The unit cell size,[1] the atomic 

species contained within the unit cell,[1,12] local structural features and mixed or partial 

occupations[40,41] have been shown to have tremendous effects on the transport of heat 

throughout the material.[17,37] The investigated compositions Ag9-xGa1-xGexSe6, analogous to 

other common argyrodites like Li6PS5Cl[42] or Ag8SnSe6,[27,31] crystallize in the cubic space 

group 𝐹4̅3𝑚 at elevated temperatures. The crystal structure is built up from a rigid unit of 

MSe4
(5−x)− (M = Ge4+, Ga3+) tetrahedra and the characteristic, partially occupied (~23% 

fractional occupation) Ag+ substructure.[27,43,44] The partially vacant substructure is often 

associated with the large ionic conductivities of the Ag+ argyrodites and their Li+ 

analogs,[25,42] providing sufficient vacant lattice sites for the mobile ion to jump. For 

simplicity, we will now refer to the 𝐹4̅3𝑚 phase as the cubic disordered phase, in reference to 

the structurally disordered Ag+ substructure.  

Below 283 K, Ag9GaSe6 crystallizes in the cubic space group P213,[45,46] which contrary to 

the high temperature phase is composed of a fully occupied Ag+ substructure, in which Ag+ 

cations are now located on clearly defined crystallographic sites. A similar transition to a phase 

with well-defined, fully occupied Ag+ atomic positions occurs in Ag8GeSe6, which crystallizes 

in the orthorhombic phase Pmn21 below 323 K.[26,27] Visual representations of the unit cells 

of all phases are shown in the Supporting Information. In contrast to Ag9GaSe6 and Ag8GeSe6, 

thus far, there are no reports of phase transitions, i.e., an ordering of the Ag+ substructure, in 

the solid solutions Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75). 
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To gain information about the success of the synthesis and the stable polymorphs at 

intermediate and low temperatures, X-ray diffraction experiments were conducted at 298 K and 

100 K, respectively. All Ga3+ containing compositions, e.g., Ag9-xGa1-xGexSe6 (with x = 0.00, 

0.25, 0.50 and 0.75), crystallize in the cubic disordered phase (space group 𝐹4̅3𝑚) at room 

temperature, as exemplary shown by Pawley fits of Ag9GaSe6 and Ag8.5Ga0.5Ge0.5Se6 (Figure 

1 a, top panel). As mentioned beforehand, Ag8GeSe6 crystallizes in the orthorhombic phase 

Pmn21 below 323 K. At low temperatures (i.e., at 100 K), Ag9GaSe6 crystallizes in space group 

P213 in agreement with earlier reports (Figure 1 a, bottom panel).[29,46] Contrary, the solid 

solutions Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75) exist in the cubic disordered phase even at 

100 K (exemplarily shown for x = 0.5, Figure 1 a, bottom panel). All diffractograms and 

corresponding Pawley fits are shown in the Supporting Information (Figure S2, Table S1). The 

successful formation of the solid solution is verified by the decrease of the unit cell volume 

(normalized to the number of formula units per unit cell Z) with the substitutional degree 

(Figure 1 b), caused by both, the decreasing amount of Ag+ contained within the cell upon 

replacing Ga3+ with Ge4+, and the lower ionic radius of Ge4+ (0.39 Å)[47] compared to Ga3+ 

(0.47 Å).[47]  

In conclusion, the structural analyses reveal that the complex, partially occupied Ag+ 

substructure is chemically stabilized in Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75), as compared 

to the structural ordering of Ag+ that occurs in Ag9GaSe6 and Ag8GeSe6 at lower 

temperatures.[25,27,29] Later it is shown that the difference in the Ag+ substructure, being 

either fully occupied (structurally ordered) or partially occupied (structurally disordered), 

causes tremendous differences in the thermal transport behavior at low temperatures (<100 K). 
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Figure 1. a) Pawley fits against X-ray diffraction data. top) At room temperature, both, 

Ag9GaSe6 and the solid solutions (exemplarily shown: Ag8.5Ga0.5Ge0.5Se6) crystallize in the 

cubic disordered phase (space group 𝐹4̅3𝑚). bottom) At 100 K, the solid solutions still 

crystallize in the cubic disordered phase, while Ag9GaSe6 undergoes Ag+ structural ordering 

and crystallizes in the cubic ordered phase 𝑃213. b)  Unit cell volume as a function of the 

substitutional degree (normalized to the number of formula units per unit cell Z), showing the 

successful formation of the solid solutions. 

3. Thermal transport of Ag9-xGa1-xGexSe6 

The thermal conductivities of the series Ag9-xGa1-xGexSe6 were experimentally determined in a 

temperature range from 2 K to 600 K, with the goal to investigate the influence of the discussed 

changes to the Ag+ substructure, i.e., being either fully occupied and structurally ordered or 

partially vacant and structurally disordered. As we reported and discussed the thermal transport 

of Ag8GeSe6 in an earlier work,[27] here these results are shown again to complement the 

results of the solid solution series.[27] Most investigated samples showed negligible electronic 

contributions to the thermal conduction 𝜅e, such that the measured total thermal conductivity 

𝜅 = 𝜅e + 𝜅L can be considered equal to only the lattice thermal conductivity, i.e., 𝜅 ≈ 𝜅L, 
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contributed by phonon heat transport. The electronic transport data and the electronic 

contributions to the thermal conductivity of all materials are shown in the Supporting 

Information (Figure S4 to S7). 

 

Figure 2. a) Lattice thermal conductivity of Ag9-xGa1-xGexSe6. top) Both endmembers, i.e., 

Ag9GaSe6 and Ag8GeSe6,[27] show a phonon peak in thermal conduction at low temperatures 

which leads into almost constant behavior at higher temperatures (>100 K). bottom) The solid 

solutions Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75) show no clearly pronounced phonon peak, 

but instead a steady increase of the thermal conductivity upon heating. b) A logarithmic plot of 

the results in panel a showing 𝜅𝐿 ∝ 𝑇2 at the lowest temperatures, which is expected when 

propagating phonons are predominantly scattered by dislocations (e.g. at grain boundaries). 

The lattice thermal conductivities of the solid solutions Ag9-xGa1-xGexSe6 show significant 

differences in their temperature dependencies at low temperatures (<100 K), comparing 

Ag9GaSe6 and Ag8GeSe6[27] (Figure 2 a, top) to the compositions with mixed Ga3+ and Ge4+ 

site occupation (Figure 2 a, bottom). The thermal conductivity of Ag9GaSe6 is comparable to 

the thermal conductivity of Ag8GeSe6,[27] characterized by 𝜅L ∝ 𝑇2 at the lowest temperatures 

that is consistent with scattering of propagating phonons by dislocations (e.g. at grain 

boundaries),[2] followed by a so-called phonon peak at ~12 K and then an approximately 
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constant value of 𝜅L ≈ 0.31 W m-1 K-1 at elevated temperatures (>100 K, Figure 2 a). It should 

be noted that a peak in thermal conductivity is expected from classic phonon-gas theory when 

the dominant scattering mechanism transitions from microstructural scattering at low 

temperature to phonon-phonon scattering at high temperature, and so a “phonon peak” is 

indicative of phonon-gas transport. [1,3,16] Although a phonon peak is observed in Ag8GeSe6,  

it was shown previously that the full temperature dependence of 𝜅L requires 2-channel transport 

considerations, with significant contributions by both, propagons and diffusons.[27] 

Considering 2-channel transport, the 𝜅L ∝ 𝑇2 behavior and the phonon peak can be explained 

by dominating propagon (phonon-gas like) transport at low temperatures, while the 

approximately constant thermal conductivities at intermediate and high temperatures are in 

agreement with diffuson transport considerations.[22,27] Thus, from a visual comparison of the 

thermal conductivities of Ag9GaSe6 and Ag8GeSe6 (Figure 2 top),[27] similar transport physics, 

i.e., 2-channel thermal transport, are expected in Ag9GaSe6.  

Contrary to the endmembers, no clearly pronounced phonon peak can be observed in the solid 

solutions Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75, Figure 2 bottom), but a continuous increase 

of the thermal conductivity upon heating. At the lowest temperatures, the thermal conductivities 

increase approximately as 𝜅L ∝ 𝑇2, similar to the results of Ag9GaSe6 and Ag8GeSe6.[27] A 

log-log plot of the thermal conductivities emphasizes the low temperature proportionality of all 

compositions (Figure 2 b). Again, this is in line with the expected temperature dependence 

originating from the scattering of propagating phonons by the materials microstructure (often 

called boundary scattering) and indicates the presence of propagon contributions to thermal 

transport[2,37] despite the absence of a clearly pronounced phonon peak. At the same time, the 

almost temperature independent, slightly increasing thermal conductivities from 100 K to 

600 K (Figure 2 bottom) strongly suggest significant diffuson contributions.[20,48,49] 
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These observations suggest that 2-channel transport, as recently shown in Ag8GeSe6,[27] is also 

likely in Ag9GaSe6 and the solid solutions Ag9-xGa1-xGexSe6 (x = 0.25, 0.50 and 0.75). Given 

the significant differences in the temperature dependence of thermal conductivity at low 

temperatures (<100 K) there is the outstanding question of how point-defects (i.e., the 

disordered Ag+ substructure) may influence both the propagon and diffuson type transport. 

Herein, an analytical 2-channel model is developed to answer these questions, in which the 

model parameters give crucial insights to the nature of phonon transport across the full 

temperature range. In particular, the conducted 2-channel analysis reveals that point-defects 

originating from the partially occupied Ag+ substructure, have a large impact on propagons (i.e., 

suppressing the phonon peak at low temperatures), but seem to have negligible influence on 

diffusons. 

4. Analytical 2-channel model 

Analytical modeling of thermal transport has significant importance for experimental studies, 

as it allows investigating the microscopic origin of macroscopically determined thermal 

conductivities.[1] Historically, the majority of analytical thermal transport modeling has relied 

on a spectral description of phonons, like the Callaway model,[1,50] in which all phonons are 

treated as propagating and phonon-gas like (propagons).[37] Thus, the Callaway model has 

been used to investigate changes to the phonon (group) velocities, e.g., through lattice 

softening[3,51] and avoided-crossings,[13,52] and changes to the phonon scattering rates, e.g., 

through boundary,[2] phonon-phonon and point-defect scattering,[40] in crystalline materials. 

It has been previously recognized that the Callaway model tends to overestimate the thermal 

conductivity of complex crystals, with various modifications introduced to account for non-

dispersive optical phonons.[1,19,53] At the same time, a thermal transport model for amorphous 

materials was developed, which classifies phonons into three types, i.e., propagons, diffusons 

and locons,[20] and associates each phonon type with a frequency range in the vibrational 
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spectrum. Empirically, the low frequency (acoustic) vibrations are propagons and higher 

frequency (optical) vibrations tend to have diffuson character (see schematic in Figure 3).[17]  

Based on the current understanding of 2-channel transport in both crystalline and amorphous 

materials, the total lattice thermal conductivity 𝜅L can thus be written as:[17,22] 

 𝜅L = 𝜅pr + 𝜅diff, Eq. 1 

where 𝜅pr and 𝜅diff denote the contributions of propagons (phonon-gas like transport) and 

diffusons to the thermal conductivity. Given the recent interest to characterize 2-channel 

transport, but recognizing the computational limitations associated with complex defective 

materials, an analytical spectral model, building upon the Callaway model but accounting for 

the possibility of diffuson contributions, is a timely and much-needed tool.  

Herein, in agreement with earlier work by Snyder et al.,[54] we propose to divide the phonon 

density of states into two transport regimes, and use the Callaway model[1] to describe the 

thermal transport by propagons and the random-walk diffusion model[14] for diffusons (short 

overview and visual summary in Figure 3). The influence of any localized modes (locons) is 

implicitly captured by the average diffuson diffusivity characterized by P within the random-

walk diffusion model,[14] as discussed later. 
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Figure 3. Schematic visualization of the proposed analytical 2-channel model. left) The 

Callaway model is utilized to describe thermal transport contributions by all phonon modes 

below the transition frequency 𝜔𝐼𝑅, which behave in a gas-like manner. middle) A transition 

frequency is introduced to differentiate the propagon (orange shading) and diffuson (green 

shading) regimes. right) Above the transition frequency, phonon modes are treated as 

conducting thermal energy diffuson-like (green shading). The diffuson contributions are 

described by the random-walk diffusion model introduced by Agne et al.[14] 

 

4.1. The propagon and diffuson regimes 

Frequently, analytical thermal conductivity models are based on the Debye approximation, 

which assumes constant group velocities throughout the entire Brillouin zone.[16] This 

approximation is often inaccurate for complex materials given the large number of nearly 

dispersionless optical phonon branches. For these complex cases, Chen et al.[53] and Toberer 

et al.[1] developed analytical models that distinguish the thermal transport contributions 

originating from acoustic and optical modes, using a maximum phonon scattering model for 

optical phonons.[54] A similar methodology is utilized in this work, with important distinctions. 

First, we incorporate a physical model of diffuson transport, which is defined by fundamentally 

different metrics than phonon scattering models. Second, we utilize the phonon density of states 
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(e.g., calculated from density functional theory or determined from inelastic neutron- or X-ray 

scattering experiments) directly, without making the Debye model approximation. Using a 

better estimation of the phonon density of states is important for capturing the temperature 

dependence and magnitude of diffuson contributions to the thermal conductivity. Given the 

widespread availability of lattice dynamics calculations and the well-known limitations of the 

Debye model, this is a valuable update to analytical thermal transport modeling. 

Following previous observations that acoustic modes conduct heat as propagons while optical 

modes are expected to conduct heat diffuson-like,[17,21,27,38] we partition the density of states 

at the acoustic phonon cut-off frequency (Figure 3). Using the terminology introduced by Allen 

and coworkers we call this the Ioffe-Regel frequency 𝜔IR, and estimate it as 𝜔IR =  𝜔D𝑁−1/3 

defined by the Debye frequency 𝜔D = (6𝜋2𝑛)1/3𝑣s (using the number density of atoms 𝑛 in 

units of atoms m−3 and the mean speed of sound 𝑣s) and the number of atoms per primitive unit 

cell 𝑁, as previously suggested by Toberer and coworkers.[1] While the transition frequency 

between propagons and diffusons can be determined more accurately using molecular dynamics 

calculations,[38] our first-order estimate is expected to be sufficient to capture the essential 

physics of 2-channel thermal transport. 

Having assigned the respective frequency ranges for propagons and diffusons, the analytical 

models that describe the thermal transport of the different phonon types can be applied.[1,14,37] 

The Callaway model[1,3,50] describes the thermal transport of propagating modes and can thus 

be used for the thermal conductivity of the propagon-channel 𝜅pr: 

 
𝜅pr =

3𝑛𝑘B

3
∫

𝑔(𝜔)

3𝑛
𝐶(𝜔)𝑣g

2(𝜔)𝜏(𝜔)d𝜔.
𝜔IR

0

 
Eq. 2 

In the Callaway model, phonon modes transport heat according to their spectral heat capacity 

𝐶(𝜔), group velocity 𝑣g(𝜔) and relaxation time 𝜏(𝜔), where the latter depends on the scattering 

processes at play in the material.[2,16,37,40] The number density of atoms 𝑛 is utilized in the 
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normalization of the phonon density of states 𝑔(𝜔) (with ∫ (
𝑔(𝜔)

3𝑛
)

∞

0
d𝜔 = 1). The spectral heat 

capacity 𝐶(𝜔) is defined from Bose-Einstein statistics as:[14] 

 
𝐶(𝜔) = (

ℏ𝜔

𝑘B𝑇
)

2

(𝑒
ℏ𝜔

𝑘B𝑇) (𝑒
ℏ𝜔

𝑘B𝑇 − 1)

−2

. 
Eq. 3 

Above the Ioffe-Regel crossover frequency 𝜔 > 𝜔IR, phonon modes are treated as diffusons 

and their thermal conductivity 𝜅diff can be calculated according to the random-walk diffusion 

model introduced by Agne et al.:[14,37] 

 

𝜅diff =
𝑛

1
3𝑘B

𝜋
∫

𝑔(𝜔)

3𝑛
𝐶(𝜔)𝑃

∞

𝜔IR

𝜔 d𝜔. 

Eq. 4 

Here, 𝑃 defines an average thermal energy exchange rate between diffuson modes, a short 

discussion of which will follow later.[14] Substituting Eq. 2 and Eq. 4 in Eq. 1 leads to the 

expression of the lattice thermal conductivity: 

 
𝜅L =

3𝑛𝑘B

3
∫

𝑔(𝜔)

3𝑛
𝐶(𝜔)𝑣g

2(𝜔)𝜏(𝜔)d𝜔
𝜔IR

0

+
𝑛

1
3𝑘B

𝜋
∫

𝑔(𝜔)

3𝑛
𝐶(𝜔)𝑃

∞

𝜔IR

𝜔 d𝜔. 

Eq. 5 

 

4.2. Analytical modeling of the propagon channel 

To determine 𝜅pr (Eq. 2), we use 𝑔(𝜔) directly (as determined by lattice dynamics calculations 

or from experiment) and use the average speed of sound 𝑣s as an estimate for the phonon group 

velocity 𝑣g(𝜔) ≈ 𝑣s, which is a common approximation in describing the phonon transport of 

acoustic modes.[1] 

Then, the total phonon lifetime 𝜏(𝜔) needs to be estimated. Multiple scattering sources are 

accounted for by summing the constituent phonon lifetimes according to Matthiessen’s rule 
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(Eq. 5).[1] In agreement with typical Callaway modeling procedures, phonon-phonon scattering 

𝜏ph(𝜔), boundary scattering 𝜏gb(𝜔) and point-defect scattering 𝜏pd(𝜔) are considered, leading 

to: 

 𝜏−1(𝜔) = 𝜏ph
−1(𝜔) + 𝜏gb

−1(𝜔) + 𝜏pd
−1(𝜔) Eq. 6 

 =  𝐶1𝜔2𝑇 +  𝐴𝜔 + 𝐶2𝜔4, Eq. 7 

as the full analytical description of the spectral phonon relaxation time 𝜏−1(𝜔).[1,37,40] 

Generally, 𝐶1, A and 𝐶2 are the model parameters that can be fit to the experimental data. 

Estimating the magnitude of each parameter from a physical understanding is advised to 

validate the empirical results. A brief overview of how to estimate the magnitude of each 

parameter is given in the Supporting Information. 

4.3. Analytical modeling of the diffuson channel 

While the Callaway model requires an approximation of the phonon lifetimes,[1] in the diffuson 

model, it is P that is needed to describe the average diffuson diffusivity (Eq. 4).[14] In the 

derivation of the analytical diffuson model,[14] P = 1 conceptually describes a maximum rate 

of thermal energy transfer between diffuson modes.[14] In this work we use P as a fitting 

parameter to experimentally determine the average coupling between diffuson modes. 

Currently, there is limited understanding about the physics underlying P, although we expect it 

to be related to the degree of overlap (quasi-degeneracy) between phonon modes that enables 

diffuson transport. The case of P = 1 describes full degeneracy between all vibrational modes, 

while in reality, the overlap of the modes is dependent on both, their proximity in energy 

(frequency) and linewidth broadening (conceptually shown in Supporting Information). With 

that, we currently believe that P is related to the average overlap integral of each pair of 

vibrational modes and that P can be both, frequency and temperature dependent. To strengthen 

the physical understanding of P, a comparison of ab-initio 2-channel modeling results and 
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calculated overlap integrals (i.e., evaluating the degree of degeneracy) with the fitting results 

using the analytical 2-channel model are required in the future.  

5.  Application of the analytical 2-channel model 

The analytical model proposed herein successfully describes the reported thermal conductivity 

of Ag8GeSe6[27] using the calculated vibrational density of states,[27] the measured speed of 

sound,[27] and fitting the phonon scattering parameters C1, A and C2, and the diffuson 

diffusivity parameter P (Figure 4). Specifically, the analytical model reproduces the magnitude 

and temperature dependence of the propagon and diffuson channel, and the total lattice thermal 

conductivity of the previously reported lattice dynamics based 2-channel modeling of 

Ag8GeSe6.[27] A direct comparison and a detailed description of the modeling procedure is 

included in the Supporting Information (Figure S8). The fitted parameters obtained from 

regression analysis are in reasonable vicinity to those determined from lattice dynamical 

calculations, especially considering the strong simplifications in the analytical model (Table 

S3, Supporting Information). 

Given the apparent similarities in the temperature dependence of the thermal conductivity 

between Ag8GeSe6 and Ag9GaSe6 (Figure 2), the same modeling procedure was conducted for 

Ag9GaSe6, utilizing the measured sound velocity and the calculated vibrational density of states 

of Ag8GeSe6. All speeds of sound and modeling parameters are listed in Table S2 in the 

Supporting Information. 

The decision to use the same vibrational density of states (i.e., Ag8GeSe6)[27] is motivated by 

the fact that changes to the chemical composition are minor and Ag+ argyrodites, e.g., 

Ag9GaSe6,[29] and Ag8SnSe6,[31] are known to have similar vibrational properties. Thus, the 

density of states of Ag8GeSe6 is expected to be a good approximation for the series 

Ag9−xGa1−xGexSe6. Recently, a high-throughput methodology has been proposed that is 

expected to provide similarly reasonable estimates of the vibrational density of states, and may 
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be particularly useful when considering large unit cells, and to access vibrational densities of 

states necessary for analytical 2-channel modeling of other material classes.[55] Although the 

distribution of vibrational states in the Ag9−xGa1−xGexSe6 series is expected to be similar, it is 

still not known to what extend a large number of point-defects, as introduced by the stabilization 

of the Ag+ structural disorder to low temperatures in the solid solutions, may impact phonon 

transport behavior in this known 2-channel system. 

 

Figure 4. Analytical 2-channel modeling of Ag9−xGa1−xGexSe6. The analytical 2-channel model 

leads to a good description of the experimental results for all samples and successfully 

reproduces the reports about Ag8GeSe6.[27] The uncertainties of the LFA data (>300 K) are 

approximated by the expected experimental standard deviations based on the work by Lin et 

al.[29] Similar to Ag8GeSe6, Ag9GaSe6 shows significant propagon contributions to thermal 

conduction at low temperatures, leading to a pronounced phonon peak. Contrary, the absence 
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of a clearly pronounced phonon peak in the solid solutions Ag9−xGa1−xGexSe6 (x = 0.25, 0.50 

and 0.75) can be explained by additional scattering of the propagating phonons by point-

defects. 

From chemical intuition, an influence of point-defect scattering on the propagon channel can 

be expected, as the Ag+ substructure in the solid solutions is only ~23 % occupied and there is 

a large mass difference associated with an Ag+ ion occupying a previously vacant site. While 

the substitution of Ga3+ with Ge4+ can introduce additional point-defect scattering, we expect 

the effect to be negligible given the lower mass contrast compared to the heavy Ag+ defects. 

Following these considerations, the point-defect scattering term is expected to be significantly 

larger when the analytical model (Eq. 6 and Eq. 7) is fit to the experimental data of the solid 

solutions. This is indeed the case, and an accurate description of the thermal transport in all 

solid solutions is achieved by regression analysis with the analytical 2-channel model, again, 

over the entire temperature range (Figure 4). Given the larger deviation between the low and 

high temperature lattice thermal conductivities of Ag8.75Ga0.75Ge0.25Se6, the model was only fit 

against the low temperature results (to not negatively influence the low temperature fit results). 

All input and model parameters are listed in the Supporting Information (Table S3). From this 

analysis, it is shown that the significantly increased point-defect scattering substantially 

suppresses the phonon-peak, so that it becomes no longer clearly pronounced in the solid 

solutions as compared to Ag8GeSe6[27] and Ag9GaSe6 (Figure 2). Moreover, our analysis 

reveals a change of the boundary scattering term (i.e., 𝐴) comparing the solid solutions and the 

endmembers, which motivates further studies focused on the influence of point-defects on the 

microstructure in the argyrodites class as has been observed in PbSe.[56] Nevertheless, the 

observed 𝜅L ∝ T2 behavior at the lowest temperatures (<3 K) originating from scattering on 

dislocations (e.g., grain boundaries) is still accurately described.[2] It has to be noted that while 

a strong increase of point-defect scattering in the solid solutions is observed compared to the 
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endmembers, we were not able to resolve a compositional trend due to the generally low thermal 

conductivities and the associated measurement uncertainties. Similarly, although the value of 

𝑃 was found to vary somewhat between the different compositions, there is no strong indication 

at this time that point-defects significantly impacts the diffuson channel. Nonetheless, 

minimizing experimental uncertainty in thermal conductivity measurements will be necessary 

to distinguish the changes in 𝑃 that may be possible by tuning the vibrational density of 

states.[22] 

To visualize how each scattering coefficient (Eqs. 5 and 7) impacts 𝜅L, Figure 5 shows how the 

propagon contributions to the thermal conductivity change as the scattering parameters are 

varied from those determined for Ag9GaSe6 towards those determined for the solid solution 

Ag8.5Ga0.5Ge0.5Se6. This comparison emphasizes that the difference in magnitude and 

temperature dependence of thermal transport originates in a large part from the increased 

number of point-defects (and the corresponding change in 𝐶2). Again, this is expected following 

the stabilization of the cubic disordered phase to low temperatures, leading to a large number 

of intrinsic (heavy) point-defects. Our analysis additionally suggests an influence of point-

defects on the microstructure (i.e., 𝐴), the understanding of which requires further studies. 

Contrary, the smaller variations of the phonon-phonon scattering term (i.e., 𝐶1) only have minor 

influences on the propagon channel (Figure 5). It should be noted that the relatively subtle 

changes observed in phonon-phonon scattering are likely within the range expected considering 

measurement uncertainties, however the necessity and predominance of point-defect scattering 

in the disordered materials is clear by the strong suppression of the phonon peak. 

Thus, the introduction of the analytical model guided our understanding of the experimental 

results, especially at low temperatures, revealing significant impact of point-defects on 

propagon transport. This influence of point-defects cannot be directly assessed from the high 

temperature thermal conductivity of the argyrodites when diffusons dominate thermal transport, 
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and based on our current understanding, diffusons are independent of both static and dynamic 

point-defects in the argyrodites.[27] With that, it is shown that tracking scattering parameters 

and the diffuson diffusivity parameter using the analytical model has the potential of tracing 

the influence of structural and chemical changes on the lattice thermal conductivity in other 2-

channel conducting materials in the future. 

 

Figure 5. a) Influence of the model parameters on the propagon channel. Starting from the 

modeling results of Ag9GaSe6, subsequently, variations of point-defect scattering (denoted: 

+ ∆𝐶2), phonon-phonon (denoted: + 𝛥𝐶1) and boundary scattering (denoted: + 𝛥𝐴) compared 

to Ag8.5Ga0.5Ge0.5Se6 are introduced. This visualizes the influence of each parameter on the 

model. It is shown that a large portion of the change in thermal transport at low temperatures 

(~10 K) can be explained by increased point-defect scattering. Variations of the diffuson 

channel are not shown for clarity. b) A logarithmic plot of panel a. 

6. Conclusion 

In this work, 2-channel thermal transport, by both propagons and diffusons, was shown to be 

prevalent in all compositions within the solid solution series Ag9-xGa1-xGexSe6. In Ag9GaSe6, in 

agreement with previous results on Ag8GeSe6, propagating phonon transport dominates at the 

lowest temperatures, as indicated by the typical temperature dependencies originating from 
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boundary and phonon-phonon scattering. Contrary, at intermediate and high temperatures, 

diffuson type conduction is responsible for the majority of heat transport, leading to the typical 

flat temperature dependence frequently reported for the argyrodites material class. In the 

intermediate compositions of the solid solutions, the highly vacant and disordered Ag+ 

substructure associated with the argyrodites high temperature phase, is stabilized to low 

temperatures. In agreement with the strong structural disorder, point-defect scattering makes a 

significant impact on the propagon transport channel, leading to the suppression of the phonon 

peak and diffuson dominated transport throughout almost the entire temperature range, as 

determined by the proposed analytical 2-channel model. In first approximation, the magnitude 

of diffuson transport was found to be independent of the additional scattering of the propagon 

channel by point-defects. These results suggest that typical strategies of engineering thermal 

transport, based on the scattering of propagating phonons, will only influence the transport at 

low temperatures in complex crystalline materials dominated by diffuson transport at high 

temperature. Therefore, we suggest that design principles targeting diffuson transport directly 

need to be developed, which should include characterizing the distribution of the vibrational 

states (e.g., interband spacings), and the degree of their (quasi)degeneracy at elevated 

temperatures (e.g., linewidth broadening). We believe that the introduction of this analytical 2-

channel transport model can facilitate 2-channel transport considerations and help establish 

engineering design principles of thermal transport in complex crystalline materials. 
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