001007470 001__ 1007470
001007470 005__ 20240711114134.0
001007470 0247_ $$2doi$$a10.3390/s23083926
001007470 0247_ $$2Handle$$a2128/34406
001007470 0247_ $$2pmid$$a37112274
001007470 0247_ $$2WOS$$aWOS:000979130600001
001007470 037__ $$aFZJ-2023-02070
001007470 082__ $$a620
001007470 1001_ $$0P:(DE-HGF)0$$aGonçalves, Bruno$$b0$$eCorresponding author
001007470 245__ $$aAdvances, Challenges, and Future Perspectives of Microwave Reflectometry for Plasma Position and Shape Control on Future Nuclear Fusion Devices
001007470 260__ $$aBasel$$bMDPI$$c2023
001007470 3367_ $$2DRIVER$$aarticle
001007470 3367_ $$2DataCite$$aOutput Types/Journal article
001007470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684133755_26605
001007470 3367_ $$2BibTeX$$aARTICLE
001007470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007470 3367_ $$00$$2EndNote$$aJournal Article
001007470 520__ $$aProviding energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical issues that need to be addressed. Plasma Position Reflectometry (PPR) is expected to have an important role in next-generation fusion machines, such as DEMO, as a diagnostic to monitor the position and shape of the plasma continuously, complementing magnetic diagnostics. The reflectometry diagnostic uses radar science methods in the microwave and millimetre wave frequency ranges and is envisaged to measure the radial edge density profile at several poloidal angles providing data for the feedback control of the plasma position and shape. While significant steps have already been given to accomplish that goal, with proof of concept tested first in ASDEX-Upgrade and afterward in COMPASS, important, ground-breaking work is still ongoing. The Divertor Test Tokamak (DTT) facility presents itself as the appropriate future fusion device to implement, develop, and test a PPR system, thus contributing to building a knowledge database in plasma position reflectometry required for its application in DEMO. At DEMO, the PPR diagnostic’s in-vessel antennas and waveguides, as well as the magnetic diagnostics, may be exposed to neutron irradiation fluences 5 to 50 times greater than those experienced by ITER. In the event of failure of either the magnetic or microwave diagnostics, the equilibrium control of the DEMO plasma may be jeopardized. It is, therefore, imperative to ensure that these systems are designed in such a way that they can be replaced if necessary. To perform reflectometry measurements at the 16 envisaged poloidal locations in DEMO, plasma-facing antennas and waveguides are needed to route the microwaves between the plasma through the DEMO upper ports (UPs) to the diagnostic hall. The main integration approach for this diagnostic is to incorporate these groups of antennas and waveguides into a diagnostics slim cassette (DSC), which is a dedicated complete poloidal segment specifically designed to be integrated with the water-cooled lithium lead (WCLL) breeding blanket system. This contribution presents the multiple engineering and physics challenges addressed while designing reflectometry diagnostics using radio science techniques. Namely, short-range dedicated radars for plasma position and shape control in future fusion experiments, the advances enabled by the designs for ITER and DEMO, and the future perspectives. One key development is in electronics, aiming at an advanced compact coherent fast frequency sweeping RF back-end [23–100 GHz in few μs] that is being developed at IPFN-IST using commercial Monolithic Microwave Integrated Circuits (MMIC). The compactness of this back-end design is crucial for the successful integration of many measurement channels in the reduced space available in future fusion machines. Prototype tests of these devices are foreseen to be performed in current nuclear fusion machines.
001007470 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
001007470 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007470 7001_ $$00000-0002-6865-8066$$aVarela, Paulo$$b1
001007470 7001_ $$00000-0002-0003-7263$$aSilva, António$$b2
001007470 7001_ $$00000-0001-5498-1359$$aSilva, Filipe$$b3
001007470 7001_ $$00000-0002-9329-2457$$aSantos, Jorge$$b4
001007470 7001_ $$0P:(DE-HGF)0$$aRicardo, Emanuel$$b5
001007470 7001_ $$00000-0003-3423-3905$$aVale, Alberto$$b6
001007470 7001_ $$0P:(DE-HGF)0$$aLuís, Raúl$$b7
001007470 7001_ $$00000-0002-3471-8569$$aNietiadi, Yohanes$$b8
001007470 7001_ $$00000-0003-2688-1160$$aMalaquias, Artur$$b9
001007470 7001_ $$0P:(DE-HGF)0$$aBelo, Jorge$$b10
001007470 7001_ $$0P:(DE-HGF)0$$aDias, José$$b11
001007470 7001_ $$0P:(DE-HGF)0$$aFerreira, Jorge$$b12
001007470 7001_ $$0P:(DE-HGF)0$$aFranke, Thomas$$b13
001007470 7001_ $$0P:(DE-Juel1)129967$$aBiel, Wolfgang$$b14$$eCorresponding author
001007470 7001_ $$00000-0001-7035-4574$$aHeuraux, Stéphane$$b15
001007470 7001_ $$0P:(DE-HGF)0$$aRibeiro, Tiago$$b16
001007470 7001_ $$00000-0002-5283-5478$$aDe Masi, Gianluca$$b17
001007470 7001_ $$0P:(DE-HGF)0$$aTudisco, Onofrio$$b18
001007470 7001_ $$00000-0002-1651-1070$$aCavazzana, Roberto$$b19
001007470 7001_ $$00000-0001-9369-5486$$aMarchiori, Giuseppe$$b20
001007470 7001_ $$0P:(DE-HGF)0$$aD’Arcangelo, Ocleto$$b21
001007470 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s23083926$$gVol. 23, no. 8, p. 3926 -$$n8$$p3926 -$$tSensors$$v23$$x1424-8220$$y2023
001007470 8564_ $$uhttps://juser.fz-juelich.de/record/1007470/files/pp_Biel_Advances%20challenges%2C%20and%20future%20perspectives.docx$$yOpenAccess
001007470 8564_ $$uhttps://juser.fz-juelich.de/record/1007470/files/sensors-23-03926-v2.pdf$$yOpenAccess
001007470 909CO $$ooai:juser.fz-juelich.de:1007470$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b14$$kFZJ
001007470 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
001007470 9141_ $$y2023
001007470 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001007470 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007470 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001007470 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25
001007470 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007470 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25
001007470 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:14Z
001007470 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:14Z
001007470 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:03:14Z
001007470 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2022$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001007470 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24
001007470 920__ $$lyes
001007470 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
001007470 9801_ $$aFullTexts
001007470 980__ $$ajournal
001007470 980__ $$aVDB
001007470 980__ $$aUNRESTRICTED
001007470 980__ $$aI:(DE-Juel1)IEK-4-20101013
001007470 981__ $$aI:(DE-Juel1)IFN-1-20101013