001007508 001__ 1007508
001007508 005__ 20231027114405.0
001007508 0247_ $$2doi$$a10.1109/ACCESS.2023.3273770
001007508 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02091
001007508 0247_ $$2WOS$$aWOS:000991619600001
001007508 037__ $$aFZJ-2023-02091
001007508 041__ $$aEnglish
001007508 082__ $$a621.3
001007508 1001_ $$0P:(DE-Juel1)185971$$aAlia, Ahmed$$b0$$eCorresponding author
001007508 245__ $$aA Cloud-Based Deep Learning Framework for Early Detection of Pushing at Crowded Event Entrances
001007508 260__ $$aNew York, NY$$bIEEE$$c2023
001007508 3367_ $$2DRIVER$$aarticle
001007508 3367_ $$2DataCite$$aOutput Types/Journal article
001007508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689337495_30993
001007508 3367_ $$2BibTeX$$aARTICLE
001007508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007508 3367_ $$00$$2EndNote$$aJournal Article
001007508 520__ $$aCrowding at the entrances of large events may lead to critical and life-threatening situations, particularly when people start pushing each other to reach the event faster. Automatic and timely identification of pushing behavior would help organizers and security forces to intervene early and mitigate dangerous situations. In this paper, we propose a cloud-based deep learning framework for automatic early detection of pushing in crowded event entrances. The proposed framework initially modifies and trains the EfficientNetV2B0 Convolutional Neural Network model. Subsequently, it integrates the adapted model with an accurate and fast pre-trained deep optical flow model with the color wheel method to analyze video streams and identify pushing patches in real-time. Moreover, the framework uses live capturing technology and a cloud-based environment to collect video streams of crowds in real-time and provide early-stage results. A novel dataset is generated based on five real-world experiments and their associated ground truth data to train the adapted EfficientNetV2B0 model. The experimental setups simulated a crowded event entrance, while the ground truths for each video experiment were generated manually by social psychologists. Several experiments on the videos and the generated dataset are carried out to evaluate the accuracy and annotation delay time of the proposed framework. The experimental results show that the proposed framework identified pushing behaviors with an accuracy rate of 87% within a reasonable delay time.
001007508 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001007508 536__ $$0G:(BMBF)01DH16027$$aPilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)$$c01DH16027$$x1
001007508 588__ $$aDataset connected to DataCite
001007508 7001_ $$0P:(DE-HGF)0$$aMaree, Mohammed$$b1$$eCorresponding author
001007508 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2
001007508 7001_ $$0P:(DE-HGF)0$$aToma, Anas$$b3
001007508 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b4$$eCorresponding author$$ufzj
001007508 773__ $$0PERI:(DE-600)2687964-5$$a10.1109/ACCESS.2023.3273770$$gVol. 11, p. 45936 - 45949$$p45936-45949$$tIEEE access$$v11$$x2169-3536$$y2023
001007508 8564_ $$uhttps://juser.fz-juelich.de/record/1007508/files/A_Cloud-Based_Deep_Learning_Framework_for_Early_Detection_of_Pushing_at_Crowded_Event_Entrances.pdf$$yOpenAccess
001007508 8767_ $$d2023-05-31$$eAPC$$jPublish and Read$$zToken
001007508 909CO $$ooai:juser.fz-juelich.de:1007508$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185971$$aForschungszentrum Jülich$$b0$$kFZJ
001007508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
001007508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b4$$kFZJ
001007508 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001007508 9141_ $$y2023
001007508 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007508 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007508 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007508 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007508 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001007508 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11
001007508 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001007508 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001007508 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-11
001007508 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007508 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-11
001007508 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:32Z
001007508 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:32Z
001007508 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:53:32Z
001007508 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ACCESS : 2022$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001007508 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001007508 920__ $$lyes
001007508 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001007508 980__ $$ajournal
001007508 980__ $$aVDB
001007508 980__ $$aUNRESTRICTED
001007508 980__ $$aI:(DE-Juel1)IAS-7-20180321
001007508 980__ $$aAPC
001007508 9801_ $$aAPC
001007508 9801_ $$aFullTexts