001007597 001__ 1007597
001007597 005__ 20240712112844.0
001007597 0247_ $$2doi$$a10.1039/D3RA02476H
001007597 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02107
001007597 0247_ $$2pmid$$a37188254
001007597 0247_ $$2WOS$$aWOS:000986224300001
001007597 037__ $$aFZJ-2023-02107
001007597 082__ $$a540
001007597 1001_ $$0P:(DE-Juel1)179011$$aSzczuka, Conrad$$b0$$eCorresponding author
001007597 245__ $$aGauging the importance of structural parameters for hyperfine coupling constants in organic radicals
001007597 260__ $$aLondon$$bRSC Publishing$$c2023
001007597 3367_ $$2DRIVER$$aarticle
001007597 3367_ $$2DataCite$$aOutput Types/Journal article
001007597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689160855_13714
001007597 3367_ $$2BibTeX$$aARTICLE
001007597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007597 3367_ $$00$$2EndNote$$aJournal Article
001007597 520__ $$aThe identification of fundamental relationships between atomic configuration and electronic structure typically requires experimental empiricism or systematic theoretical studies. Here, we provide an alternative statistical approach to gauge the importance of structure parameters, i.e., bond lengths, bond angles, and dihedral angles, for hyperfine coupling constants in organic radicals. Hyperfine coupling constants describe electron–nuclear interactions defined by the electronic structure and are experimentally measurable, for example, by electron paramagnetic resonance spectroscopy. Importance quantifiers are computed with the machine learning algorithm neighborhood components analysis using molecular dynamics trajectory snapshots. Atomic–electronic structure relationships are visualized in matrices correlating structure parameters with coupling constants of all magnetic nuclei. Qualitatively, the results reproduce common hyperfine coupling models. Tools to use the presented procedure for other radicals/paramagnetic species or other atomic structure-dependent parameters are provided.
001007597 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001007597 588__ $$aDataset connected to DataCite
001007597 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b1$$ufzj
001007597 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b2$$ufzj
001007597 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D3RA02476H$$gVol. 13, no. 21, p. 14565 - 14574$$n21$$p14565 - 14574$$tRSC Advances$$v13$$x2046-2069$$y2023
001007597 8564_ $$uhttps://juser.fz-juelich.de/record/1007597/files/Invoice_INV_026169.pdf
001007597 8564_ $$uhttps://juser.fz-juelich.de/record/1007597/files/d3ra02476h.pdf$$yOpenAccess
001007597 8767_ $$8INV_026169$$92023-05-17$$a1200193458$$d2023-06-02$$eAPC$$jZahlung erfolgt$$zGBP 850,-
001007597 909CO $$ooai:juser.fz-juelich.de:1007597$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179011$$aForschungszentrum Jülich$$b0$$kFZJ
001007597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b1$$kFZJ
001007597 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b1$$kRWTH
001007597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b2$$kFZJ
001007597 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b2$$kRWTH
001007597 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001007597 9141_ $$y2023
001007597 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007597 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007597 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007597 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007597 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001007597 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001007597 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001007597 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
001007597 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007597 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
001007597 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:04:19Z
001007597 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:04:19Z
001007597 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:04:19Z
001007597 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-26$$wger
001007597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2022$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001007597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001007597 920__ $$lyes
001007597 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001007597 9801_ $$aAPC
001007597 9801_ $$aFullTexts
001007597 980__ $$ajournal
001007597 980__ $$aVDB
001007597 980__ $$aUNRESTRICTED
001007597 980__ $$aI:(DE-Juel1)IEK-9-20110218
001007597 980__ $$aAPC
001007597 981__ $$aI:(DE-Juel1)IET-1-20110218