

Small-Angle X-Ray Scattering for Studying Nanostructured Systems

Asmaa Qdemat

Where I work:

Jülich Centre for Neutron Science

Jülich Centre for Neutron Science (JCNS-2)

Single crystal & poly-crystalline

Thin film

Sample preparation

MPMS

JCNS-2 Facilities

4-circle diffractometer

GALAXI

Powder X-ray diffractometer

Magnetization

DynaCool

PPMS

Supernova single crystal diffractometer

In-house X-ray facilities

Laue Camera

Bruker AXS reflectometer

Contents

- Introduction
- Instrumentation
- Experimental techniques
- Scientific results
- Summary
- PDF @ ID09 SESAME
- Future plans at SESAME

SAXS

Sample

"When the scientist have learned how to control the arrangement of matter at very small scale they will see material take an enormously richer variety of properties"

Richard Feynman (1929)

Small-Angle X-Ray Scattering

Analytical technique, measures the intensities of X-rays scattered by a sample as a function

Region

10-3

10-2

q

SAXS -→ Mesoscopic length scale, 1 to several hundred nm chemical composition, Particle size, shape and correlations, formation of superstructures

- Transmission mode
- Elastic scattering

Intensity function (I(q)) related to the scattering vector amplitude (q)

$$q = \frac{4\pi}{\lambda} \sin 2\theta$$

Quantum Materials and Collective Phenomena (JCNS-2/PGI-4) SESAME-Germany Info Day | 21 April 2023

GALAXI @ JCNS

Jülich Centre for Neutron Science

Gallium Anode Low-Angle X-ray Instrument (GALAXI)

- Small angle X-ray diffractometer
- Laboratory X-ray source with the highest brilliance available today

Metaljet from Bruker AXS

1M Pilatus from Dectris

Experiments @ GALAXI

Wide Angle X-ray Scattering

(WAXS)

SAXS and WAXS can be done simultaneously by moving the detector closer or further away from the sample

SAXS → very small angles → nanoscale resolution

WAXS → wider angles → atomic resolution

Experiments @ GALAXI

X-Ray Reflectometry (XRR)

- Specular reflectivity, $\alpha_f = \alpha_i$
- Laterally average density profile
- Out-of-plane structure
- Layer thickness / Interface roughness

Grazing Incidence Small Angle X-ray Scattering (GISAXS)

- $\alpha_f \neq \alpha_i$, \vec{Q} has in-plane component
- In-plane structural correlation.
- Information about buried objects, object geometry, size distribution and spatial correlations

Sample environment

SAXS

Permanent Magnet

B2 = 0.9 T

Temperature

10°C - 70°C

Immobilized samples

- Size and size distribution of NPs
- Self-assembly of the particles in dispersion at room temperature.
- Effect of size, concentration, and applied field in self-assembly of NPs

Solution

Quartz glass capillaries (Hilgenberg GmbH)

WAXS

Sample environment & Setup

- 1D position-sensitive detector

 → Mythen 1k from Dectris
- Oriented Horizontally
- covers 41 degrees in 20
- WAXS with applying voltage
- Thin film sample

Sample-to-detector distance = 85 m

GIWAXS measurement

Modelling of SAXS, GISAXS and XRR data

SasView

http://doi.org/10.5281/zenodo.3653469

GenX

J. Appl. Cryst. (2022). 55, 1063-1071

BornAgain

J. Appl. Cryst. (2020). 53, 262-276

Fit2d

J. Appl. Cryst. (2016). 49, 646-652

Scientific results

SAXS

Statistically average information

SPION^{Citrate} in water and immobilized in crosslinked polymer matrix

Spherical nanoparticles

- Silica NP
- Grafted with Stearylalcohol
- Dispersed in toluene

Superball nanoparticles

• Iron oxide (maghemite)

Reflectometry and grazing-incidence scattering

Self assembled monolayer of silica nanoparticles with improved order by drop casting

Qdemat, Asma et.al. (2020). "Self assembled monolayer of silica nanoparticles with improved order by drop casting". RSC Advances. 10. 18339-18347. 10.1039/D0RA00936A.

Mitglied der Helmholtz-Gemeinschaft

 $Q_y [1/nm]$

Quantum Materials and Collective Phenomena (JCNS-2/PGI-4) SESAME-Germany Info Day | 21 April 2023

2D Ordered Arrays of Ferrimagnetic Cobalt Ferrite nanodots

Forschungszentrum

substrate

Directed self-assembly of magnetic nanoparticles on

patterned substrates

Jülich Centre for Neutron Science

patterned surfaces

No correlation between the structural arrangement of nanoparticles and the geometry of the trench-patterned substrates

Magnetic multilayers on Silica nanospheres

Self-Assembled Mesocrystals of silica Nanospheres

GISAXS measurement from an assembly of magnetic nanoparticles of cubic shape deposited on a substrate

(E. Josten et al. Nanoscale Horizons 5, 1065 (2020))

Summary

Porosity

Orientation

Internal structure

What SAXS

determines

Shape

SAXS / GISAXS: open new possibilities of advanced sample characterization

SAXS / GISAXS : reciprocal space analysis technique

- non-destructive structural probe
- Low sample preparation efforts
- Yields excellent sampling statistics
 (averages over macroscopic regions to provide information on nanometer scale)

PDF @ ID09-MS - SESAME

Amal Atari

structural characterization of citrate coated superparamagnetic iron oxide nanoparticles for magnetically controlled immune therapy

Time-resolved in situ PDF experiments during annealing

Track changes in the crystalline structure of the iron oxide core and determine its composition

Future plans at SESAME

Tuning shape-imposed anisotropy via magnetic multilayers on self-organized nanospheres

<u>Aim:</u> investigate the influence of using curved surfaces as a substrate on the deposited magnetic thin film properties

Magnetic multilayers on nanospheres

Magnetic multilayers on Si substrate

Element-specific orbital magnetic moments and their anisotropies

Co L-edge and Pd M-edge angle-dependent XMCD

SAXS / WAXS / GISAXS beamline

SESAME

Future vision

25th JCNS Laboratory Course - Neutron Scattering 2023

04 - 15 September 2023 Jülich / Garching – Germany

https://www.fzjuelich.de/jcns/EN/Expertise/ConferencesAndWorkshops/LabCourse/_node.html

Acknowledgments

Helmholtz Nanoelectronic Facility, HNF

Electronic Materials (PGI-7)

Institute for Biological Information Processes (IBI-4)

SESAME

university of groningen

Thank you for your attention!

If you want to perform your own SAXS or GISAXS or WAXS experiment with GALAXI:

Info: https://www.fz-juelich.de/en/jcns/jcns-2/expertise/in-house-x-ray/galaxi

you are also welcome to e-mail me at

a.qdemat@fz-juelich.de

Interface Magnetic Properties (XMCD)

M.H. Hamed et al. ACS Applied Materials & Interfaces, 11(7), 7576, 2019.

Intralayer Thickness (XMCD)

