001007624 001__ 1007624
001007624 005__ 20240712112813.0
001007624 0247_ $$2doi$$a10.1039/D3TA02161K
001007624 0247_ $$2ISSN$$a2050-7488
001007624 0247_ $$2ISSN$$a2050-7496
001007624 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02123
001007624 0247_ $$2WOS$$aWOS:001047634400001
001007624 037__ $$aFZJ-2023-02123
001007624 082__ $$a530
001007624 1001_ $$0P:(DE-Juel1)180863$$aWolf, Stephanie Elisabeth$$b0$$ufzj
001007624 245__ $$aSolid oxide electrolysis cells – current material development and industrial application
001007624 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2023
001007624 3367_ $$2DRIVER$$aarticle
001007624 3367_ $$2DataCite$$aOutput Types/Journal article
001007624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706173097_25209
001007624 3367_ $$2BibTeX$$aARTICLE
001007624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007624 3367_ $$00$$2EndNote$$aJournal Article
001007624 520__ $$aSolid Oxide Electrolysis Cells (SOECs) have proven to be a highly efficient key technology for producing valuable chemicals and fuels from renewably generated electricity at temperatures between 600 °C and 900 °C, thus providing a carbon-neutral method for energy storage. The successful implementation of this technology on an industrial level in particular requires the long-term stability of all system components with a concurrent overall degradation rate of a maximum of 0.75 %∙kh-1 or even better 0.5 % k∙h-1, corresponding to a performance loss of 20 % over approx. five years under constant operating parameters1. However, the materials currently used for SOEC systems have been developed and optimized in recent decades for fuel cell operation. The degradation of these Solid oxide Fuel Cell (SOFC) materials to be used in SOECs, however, slows down the technology and market ramp-up. Accordingly, a selection and development of materials specifically for use in SOEC operation, must therefore be based not only on the highest performance but also on the lowest achievable degradation rate. In general, the systematic development of new SOEC materials must be driven towards key performance parameters such as mechanical, thermal, and chemical stability as well as an application-oriented assessment (cost effectiveness, simple manufacturing). This review presents the state-of-the-art materials in current industrial use for SOECs as well as future challenges regarding materials design and degradation. Recent advances in material compositions are discussed and evaluated in terms of their performance, stability, and potential for industrial implementation. In addition, a materials selection for interconnects, coatings, and sealants is briefly listed to outline current developments in these areas.
001007624 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007624 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001007624 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007624 7001_ $$0P:(DE-Juel1)188481$$aWinterhalder, Franziska E.$$b1$$ufzj
001007624 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b2$$ufzj
001007624 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b3$$ufzj
001007624 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
001007624 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A$$b5$$ufzj
001007624 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert$$b6$$eCorresponding author$$ufzj
001007624 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA02161K$$gp. 10.1039.D3TA02161K$$n34$$p17977-18028$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001007624 8564_ $$uhttps://juser.fz-juelich.de/record/1007624/files/Invoice_TRX20048224.pdf
001007624 8564_ $$uhttps://juser.fz-juelich.de/record/1007624/files/d3ta02161k.pdf$$yOpenAccess
001007624 8767_ $$8TRX20048224$$92023-05-23$$a1200193492$$d2023-06-02$$ePermission$$jZahlung erfolgt
001007624 8767_ $$d2023-12-01$$eHybrid-OA$$jPublish and Read
001007624 909CO $$ooai:juser.fz-juelich.de:1007624$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180863$$aForschungszentrum Jülich$$b0$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188481$$aForschungszentrum Jülich$$b1$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b2$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b3$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001007624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
001007624 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007624 9141_ $$y2023
001007624 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007624 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001007624 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001007624 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
001007624 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
001007624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007624 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001007624 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001007624 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001007624 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001007624 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
001007624 9801_ $$aAPC
001007624 9801_ $$aFullTexts
001007624 980__ $$ajournal
001007624 980__ $$aVDB
001007624 980__ $$aI:(DE-Juel1)IEK-1-20101013
001007624 980__ $$aI:(DE-Juel1)IEK-9-20110218
001007624 980__ $$aAPC
001007624 980__ $$aUNRESTRICTED
001007624 981__ $$aI:(DE-Juel1)IET-1-20110218
001007624 981__ $$aI:(DE-Juel1)IMD-2-20101013