001     1007678
005     20240319203610.0
024 7 _ |a 10.1016/j.jpcs.2023.111436
|2 doi
024 7 _ |a 0022-3697
|2 ISSN
024 7 _ |a 0369-8726
|2 ISSN
024 7 _ |a 1879-2553
|2 ISSN
024 7 _ |a 2128/34538
|2 Handle
024 7 _ |a WOS:001001468500001
|2 WOS
037 _ _ |a FZJ-2023-02161
082 _ _ |a 540
100 1 _ |a Grzechnik, Andrzej
|0 P:(DE-Juel1)194570
|b 0
|e Corresponding author
245 _ _ |a Anti-isostructural phase transition and twinning in CrAs at low temperatures and high pressures
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710836174_14550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chromium arsenide CrAs (Pnma, Z = 4) is studied with synchrotron single-crystal diffraction in diamond anvil cells at high-pressures and low temperatures to examine its structural evolution across the boundary (TN) between the antiferromagnetic (AF) and paramagnetic (PM) states. Compressing CrAs across TN at low temperatures is equivalent to warming up the material from the AF to PM phases at atmospheric pressure. The phase transition at different conditions is determined from the abrupt changes of the lattice parameters, unit-cell volumes, axial ratios, and interatomic distances. Although, the space group symmetry does not change at TN, the transition is associated with the formation of twin domains. All experimental observations are rationalized with the concept of an anti-isostructural phase transition, in which both orthorhombic phases have the same space group symmetry, but different distortions of the parent hexagonal structure of the NiAs type (P63/mmc, Z = 2). The magneto-structural phase transformation in CrAs is the first example of the anti-isostructural phase transition, in which twinning, as a signature of lost higher rotational symmetry, has been detected.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Dmitriev, Vladimir
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hanfland, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Geise, Tobias
|0 0000-0002-7056-0818
|b 3
700 1 _ |a Shahed, Hend
|0 P:(DE-Juel1)185953
|b 4
|u fzj
700 1 _ |a Friese, Karen
|0 P:(DE-Juel1)145694
|b 5
|u fzj
773 _ _ |a 10.1016/j.jpcs.2023.111436
|g Vol. 180, p. 111436 -
|0 PERI:(DE-600)1491914-X
|p 111436 -
|t Journal of physics and chemistry of solids
|v 180
|y 2023
|x 0022-3697
856 4 _ |u https://juser.fz-juelich.de/record/1007678/files/grzechnik_revised_cras_esrf_manuscript.docx
|y Published on 2023-05-11. Available in OpenAccess from 2024-05-11.
909 C O |o oai:juser.fz-juelich.de:1007678
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194570
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185953
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145694
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM SOLIDS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21