Hauptseite > Publikationsdatenbank > Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part I: Investigation of Autoencoder-Based Trainings > print |
001 | 1007692 | ||
005 | 20240226075321.0 | ||
024 | 7 | _ | |a 2128/34555 |2 Handle |
037 | _ | _ | |a FZJ-2023-02166 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Sarma, Rakesh |0 P:(DE-Juel1)188513 |b 0 |e Corresponding author |
111 | 2 | _ | |a 33rd International Conference on Parallel Computational Fluid Dynamics |g ParCFD2022 |c Alba |d 2022-05-25 - 2022-05-27 |w Italy |
245 | _ | _ | |a Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part I: Investigation of Autoencoder-Based Trainings |
260 | _ | _ | |c 2022 |
300 | _ | _ | |a 4 pages |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1687325830_18222 |2 PUB:(DE-HGF) |
520 | _ | _ | |a With the availability of large datasets and increasing high-performance computing resources, machine learning tools offer many opportunities to improve and/or augment numerical methods used in the field of computational fluid dynamics. A low-dimensional representation of a turbulent boundary layer flow field is generated by a plain and a physics-contrained autoencoder. The training makes use of a distributed learning environment. The average test error of the plain autoencoder is ~4.4 times smaller than the error of the physics-constrained autoencoder although the latter integrates physical laws in the training process. Furthermore, after 1,000 epochs, the training loss of the physics-constrained autoencoder is ~9.1 times higher than the plain autoencoder after 300 epochs. The neural network corresponding to the plain autoencoder is able to provide accurate reconstructions of a turbulent boundary layer flow. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
700 | 1 | _ | |a Albers, Marian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Inanc, Eray |0 P:(DE-Juel1)188268 |b 2 |
700 | 1 | _ | |a Aach, Marcel |0 P:(DE-Juel1)180916 |b 3 |u fzj |
700 | 1 | _ | |a Schröder, Wolfgang |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 5 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007692/files/2022_ParCFD_Abstract_Sarma.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1007692 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188513 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188268 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180916 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)165948 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|