Contribution submission to the conference SKM 2023 Magnetite (Fe_{3- δ}O₄) homoepitaxy observed by X-ray intensity growth oscillations — •Steffen Tober^{1,2,3}, Marcus Creutzburg¹, Björn Arndt¹, Simon Chung¹, Leon Jacobse¹, Arno Jeromin¹, Vedran Vonk¹, and Andreas Stierle^{1,2} — ¹Deutsches Elektronen-Synchrotron DESY, Centre for X-ray and Nanoscience, Hamburg — ²Universität Hamburg, Fachbereich Physik — ³Jülich Centre for Neutron Science (JCNS) and Peter Grünberg Institut (PGI), JARA-FIT, Forschungszentrum Jülich Processes on the $Fe_{3-\delta}O_4$ (001) surface like oxidative regrowth, (partial) lifting of the subsurface cation vacancy reconstruction and the element-specific incorporation of adatoms demonstrate the sensitive relation of oxygen pressure, cation transport and structure in the nearsurface region of $Fe_{3-\delta}O_4$ influencing the performance of catalysts and devices [1,2,3]. We exemplarily studied the homoepitaxial growth of $Fe_{3-\delta}O_4$ (001) in dependence of the O_2 pressure and iron flux. Xray intensity growth oscillations proved ordered growth of Fe_{3-δ}O₄ for all probed conditions while atomic force microscopy revealed newly formed micrometre-sized surface structures exceeding the amount of deposited material [4]. Our results indicate the presence of multiple parallel processes during reactive $Fe_{3-\delta}O_4$ homoepitaxy suggesting similar processes to occur also in other applications of $Fe_{3-\delta}O_4$. [1] Nie et al., J. Am. Chem. Soc. 135, 10091 (2013), [2] Arndt, B. et al. PCCP 22, 8336 (2020), [3] Mirabella et al., Electrochimica Acta, 389, 138638 (2021), [4] van der Vegt et al., Phys. Rev. Lett. 68, 3335 (1992) Part: O Type: Vortrag; Talk Topic: Oxide and insulator surfaces: Structure, epitaxy and growth Email: s.tober@fz-juelich.de