001007792 001__ 1007792
001007792 005__ 20240705080647.0
001007792 0247_ $$2doi$$a10.1021/acs.jpcc.3c02503
001007792 0247_ $$2ISSN$$a1932-7447
001007792 0247_ $$2ISSN$$a1932-7455
001007792 0247_ $$2Handle$$a2128/34518
001007792 0247_ $$2WOS$$aWOS:001006025400001
001007792 037__ $$aFZJ-2023-02187
001007792 082__ $$a530
001007792 1001_ $$0P:(DE-Juel1)177062$$aWördenweber, Henrik$$b0
001007792 245__ $$aThe MoS 2 -Graphene-Sapphire Heterostructure: Influence of Substrate Properties on the MoS 2 Band Structure
001007792 260__ $$aWashington, DC$$bSoc.$$c2023
001007792 3367_ $$2DRIVER$$aarticle
001007792 3367_ $$2DataCite$$aOutput Types/Journal article
001007792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719987870_14554
001007792 3367_ $$2BibTeX$$aARTICLE
001007792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007792 3367_ $$00$$2EndNote$$aJournal Article
001007792 520__ $$aVan der Waals MoS2/graphene heterostructures are promising candidates for advanced electronics and optoelectronics beyond graphene. Herein, scanning probe methods and Raman spectroscopy were applied for analysis of the electronic and structural properties of monolayer (ML) and bilayer 2H-MoS2 deposited on single-layer graphene (SLG)-coated sapphire (S) substrates by means of an industrially scalable metal organic chemical vapor deposition process. The SLG/S substrate shows two regions with distinctly different morphology and varied interfacial coupling between SLG and S. ML MoS2 nanosheets grown on the almost free-standing graphene show no detectable interface coupling to the substrate, and a value of 2.23 eV for the MoS2 quasiparticle bandgap is determined. However, if the graphene is involved in hydrogen bonds to the hydroxylated sapphire surface, an increased MoS2/graphene interlayer coupling results, marked by a shift of the conduction band edge toward Fermi energy and a reduction of the ML MoS2 quasiparticle bandgap to 1.98 eV. The surface topography reveals a buckle structure of ML MoS2 in conformity with SLG that is used to determine the dependence of the ML MoS2 bandgap on the interfacial spacing of this heterostructure. In addition, an in-gap acceptor state about 0.9 eV above the valence band minimum of MoS2 has been observed on locally elevated positions on both SLG/S regions, which is attributed to local bending strain in the grown MoS2 nanosheets. These fundamental insights reveal the impact of the underlying substrate on the topography and the band alignment of the ML MoS2/SLG heterostructure and provide the possibility for engineering the quasiparticle bandgap of ML MoS2/SLG grown on controlled substrates that may impact the performance of electronic and optoelectronic devices therewith.
001007792 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001007792 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x1
001007792 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x2
001007792 536__ $$0G:(DE-82)BMBF-16ME0403$$aBMBF 16ME0403 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0403)$$cBMBF-16ME0403$$x3
001007792 536__ $$0G:(BMBF)03ZU1106AA$$aBMBF 03ZU1106AA - NeuroSys: Memristor Crossbar Architekturen (Projekt A) - A (03ZU1106AA)$$c03ZU1106AA$$x4
001007792 536__ $$0G:(DE-Juel1)BMBF-03ZU1106AB$$aBMBF 03ZU1106AB - NeuroSys: "Memristor Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB)$$cBMBF-03ZU1106AB$$x5
001007792 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007792 7001_ $$0P:(DE-HGF)0$$aGrundmann, Annika$$b1
001007792 7001_ $$0P:(DE-Juel1)186823$$aWang, Zhaodong$$b2
001007792 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b3
001007792 7001_ $$0P:(DE-HGF)0$$aKalisch, Holger$$b4
001007792 7001_ $$00000-0001-9465-2621$$aVescan, Andrei$$b5
001007792 7001_ $$0P:(DE-HGF)0$$aHeuken, Michael$$b6
001007792 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7
001007792 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b8$$eCorresponding author
001007792 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.3c02503$$gp. acs.jpcc.3c02503$$n22$$p10878–10887$$tThe journal of physical chemistry / C$$v127$$x1932-7447$$y2023
001007792 8564_ $$uhttps://juser.fz-juelich.de/record/1007792/files/acs.jpcc.3c02503.pdf$$yOpenAccess
001007792 8767_ $$d2023-05-31$$eHybrid-OA$$jPublish and Read
001007792 909CO $$ooai:juser.fz-juelich.de:1007792$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001007792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177062$$aForschungszentrum Jülich$$b0$$kFZJ
001007792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186823$$aForschungszentrum Jülich$$b2$$kFZJ
001007792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b3$$kFZJ
001007792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
001007792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b8$$kFZJ
001007792 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001007792 9141_ $$y2023
001007792 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007792 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001007792 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001007792 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007792 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001007792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001007792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001007792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001007792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001007792 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001007792 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001007792 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001007792 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001007792 980__ $$ajournal
001007792 980__ $$aVDB
001007792 980__ $$aI:(DE-Juel1)PGI-7-20110106
001007792 980__ $$aI:(DE-Juel1)PGI-10-20170113
001007792 980__ $$aI:(DE-82)080009_20140620
001007792 980__ $$aAPC
001007792 980__ $$aUNRESTRICTED
001007792 9801_ $$aAPC
001007792 9801_ $$aFullTexts