001007796 001__ 1007796 001007796 005__ 20250317091734.0 001007796 0247_ $$2Handle$$a2128/34525 001007796 037__ $$aFZJ-2023-02191 001007796 1001_ $$0P:(DE-Juel1)138707$$aBreuer, Thomas$$b0$$eCorresponding author$$ufzj 001007796 1112_ $$aISC High Performance 2023$$cHamburg$$d2023-05-21 - 2023-05-25$$gISC 2023$$wGermany 001007796 245__ $$aTackling challenges in energy system research with HPC 001007796 260__ $$c2023 001007796 3367_ $$033$$2EndNote$$aConference Paper 001007796 3367_ $$2BibTeX$$aINPROCEEDINGS 001007796 3367_ $$2DRIVER$$aconferenceObject 001007796 3367_ $$2ORCID$$aCONFERENCE_POSTER 001007796 3367_ $$2DataCite$$aOutput Types/Conference Poster 001007796 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1687157379_24123$$xAfter Call 001007796 520__ $$aEnergy system optimization models are one of the central instruments for the successful realization of the energy transition towards renewable sources. We have identified three major challenges to overcome the current limitations in energy system research. First, studying the future is subject to large uncertainties and these uncertainties are usually tackled with modeling of just a small subset of all possible scenarios. This has proven to be inadequate since most models are highly sensitive to input data. Second, the widely-used commercial solvers show poor scalability and are limited to single shared-memory compute nodes. Thus, models are defined with a lower resolution and technological diversity than necessary. The third challenge is that single models usually tend to investigate only certain aspects of an energy system, which do not cover all parts of future pathways. To overcome those limitations, we inspect the conceivable parameter space by using a hitherto unattained number of model-based scenarios. Therefore, we have implemented an automated parameter sampling based on a broad literature review, and a self-developed distributed-memory solver that outperforms commercial solvers. In addition, we have coupled different types of models in an automated, parallelized workflow. We use this workflow for a case study of the German power system. By evaluating more than 3600 scenarios, we observe a clear dominance of photovoltaics in future system designs. Efficiently leveraging the capability of HPC by combining those approaches could be a game changer for the energy-system analysis community and could ensure a better applicability for real world policy support. 001007796 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001007796 536__ $$0G:(BMWi)03EI1004F$$aVerbundvorhaben: UNSEEN ' Bewertung der Unsicherheiten in linear optimierenden Energiesystem-Modellen unter Zuhilfenahme Neuronaler Netze, Teilvorhaben: Entwicklung einer integrierten HPC-Workflow Umgebung zur Kopplung von Optimierungsmethoden mit Methode (03EI1004F)$$c03EI1004F$$x1 001007796 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x2 001007796 7001_ $$0P:(DE-HGF)0$$aCao, Karl-Kiên$$b1 001007796 7001_ $$0P:(DE-HGF)0$$aWetzel, Manuel$$b2 001007796 7001_ $$0P:(DE-HGF)0$$aFrey, Ulrich$$b3 001007796 7001_ $$0P:(DE-HGF)0$$aSasanpour, Shima$$b4 001007796 7001_ $$0P:(DE-HGF)0$$aBuschmann, Jan$$b5 001007796 7001_ $$0P:(DE-HGF)0$$avon Krbek, Kai$$b6 001007796 7001_ $$0P:(DE-HGF)0$$aBöhme, Aileen$$b7 001007796 7001_ $$0P:(DE-HGF)0$$aVanaret, Charlie$$b8 001007796 8564_ $$uhttps://juser.fz-juelich.de/record/1007796/files/UNSEEN_ISC_2023_Poster.pdf$$yOpenAccess 001007796 909CO $$ooai:juser.fz-juelich.de:1007796$$pdriver$$pVDB$$popen_access$$popenaire 001007796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138707$$aForschungszentrum Jülich$$b0$$kFZJ 001007796 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001007796 9141_ $$y2023 001007796 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001007796 920__ $$lyes 001007796 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001007796 9801_ $$aFullTexts 001007796 980__ $$aposter 001007796 980__ $$aVDB 001007796 980__ $$aUNRESTRICTED 001007796 980__ $$aI:(DE-Juel1)JSC-20090406