001007800 001__ 1007800
001007800 005__ 20231103080308.0
001007800 0247_ $$2doi$$a10.1002/hbm.26341
001007800 0247_ $$2ISSN$$a1065-9471
001007800 0247_ $$2ISSN$$a1097-0193
001007800 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02195
001007800 0247_ $$2pmid$$a37232486
001007800 0247_ $$2WOS$$aWOS:000994935800001
001007800 037__ $$aFZJ-2023-02195
001007800 082__ $$a610
001007800 1001_ $$0P:(DE-Juel1)169201$$aRamkiran, Shukti$$b0
001007800 245__ $$aHow brain networks tic: Predicting tic severity through rs‐fMRI dynamics in Tourette syndrome
001007800 260__ $$aNew York, NY$$bWiley-Liss$$c2023
001007800 3367_ $$2DRIVER$$aarticle
001007800 3367_ $$2DataCite$$aOutput Types/Journal article
001007800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690288210_6094
001007800 3367_ $$2BibTeX$$aARTICLE
001007800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007800 3367_ $$00$$2EndNote$$aJournal Article
001007800 520__ $$aTourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics, which several different theories, such as basal ganglia-thalamo-cortical loop dysfunction and amygdala hypersensitivity, have sought to explain. Previous research has shown dynamic changes in the brain prior to tic onset leading to tics, and this study aims to investigate the contribution of network dynamics to them. For this, we have employed three methods of functional connectivity to resting-state fMRI data – namely the static, the sliding window dynamic and the ICA based estimated dynamic; followed by an examination of the static and dynamic network topological properties. A leave-one-out (LOO-) validated regression model with LASSO regularization was used to identify the key predictors. The relevant predictors pointed to dysfunction of the primary motor cortex, the prefrontal-basal ganglia loop and amygdala-mediated visual social processing network. This is in line with a recently proposed social decision-making dysfunction hypothesis, opening new horizons in understanding tic pathophysiology.
001007800 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001007800 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007800 7001_ $$0P:(DE-Juel1)197044$$aVeselinović, Tanja$$b1$$ufzj
001007800 7001_ $$0P:(DE-Juel1)131757$$aDammers, Jürgen$$b2$$ufzj
001007800 7001_ $$0P:(DE-HGF)0$$aGaebler, Arnim Johannes$$b3
001007800 7001_ $$0P:(DE-Juel1)164396$$aRajkumar, Ravichandran$$b4
001007800 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b5$$ufzj
001007800 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b6$$eCorresponding author$$ufzj
001007800 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.26341$$gp. hbm.26341$$n11$$p4225-4238$$tHuman brain mapping$$v44$$x1065-9471$$y2023
001007800 8564_ $$uhttps://juser.fz-juelich.de/record/1007800/files/Human%20Brain%20Mapping%20-%202023%20-%20Ramkiran%20-%20How%20brain%20networks%20tic%20Predicting%20tic%20severity%20through%20rs%E2%80%90fMRI%20dynamics%20in.pdf$$yOpenAccess
001007800 8767_ $$8W-2023-00477-b$$92023-09-28$$d2023-06-21$$eAPC$$jZahlung erfolgt
001007800 909CO $$ooai:juser.fz-juelich.de:1007800$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169201$$aForschungszentrum Jülich$$b0$$kFZJ
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)197044$$aForschungszentrum Jülich$$b1$$kFZJ
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b2$$kFZJ
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164396$$aForschungszentrum Jülich$$b4$$kFZJ
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
001007800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b6$$kFZJ
001007800 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001007800 9141_ $$y2023
001007800 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001007800 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
001007800 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001007800 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-22$$wger
001007800 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:46:01Z
001007800 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:46:01Z
001007800 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001007800 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
001007800 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007800 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
001007800 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001007800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-27T20:46:01Z
001007800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2022$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001007800 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001007800 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007800 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007800 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007800 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007800 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001007800 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
001007800 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
001007800 980__ $$ajournal
001007800 980__ $$aVDB
001007800 980__ $$aUNRESTRICTED
001007800 980__ $$aI:(DE-Juel1)INM-4-20090406
001007800 980__ $$aI:(DE-Juel1)INM-11-20170113
001007800 980__ $$aI:(DE-Juel1)VDB1046
001007800 980__ $$aAPC
001007800 9801_ $$aAPC
001007800 9801_ $$aFullTexts