001007826 001__ 1007826
001007826 005__ 20240712112815.0
001007826 0247_ $$2doi$$a10.3390/catal13050903
001007826 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02211
001007826 0247_ $$2WOS$$aWOS:000997799600001
001007826 037__ $$aFZJ-2023-02211
001007826 082__ $$a540
001007826 1001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b0
001007826 245__ $$aCO2 Electroreduction to Formate—Comparative Study Regarding the Electrocatalytic Performance of SnO2 Nanoparticles
001007826 260__ $$aBasel$$bMDPI$$c2023
001007826 3367_ $$2DRIVER$$aarticle
001007826 3367_ $$2DataCite$$aOutput Types/Journal article
001007826 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689668037_9641
001007826 3367_ $$2BibTeX$$aARTICLE
001007826 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007826 3367_ $$00$$2EndNote$$aJournal Article
001007826 520__ $$aSnO2 nanoparticles have frequently been reported as effective electrocatalysts for CO2 electroreduction to formate. However, in the literature, there is little knowledge of SnO2 nanoparticles that guarantee superior electrocatalytic performance. Hence, in this study, several SnO2 nanoparticles are compared with respect to their material properties, and correlations to the electrocatalytic performance are established. For comparison, three custom-made SnO2-electrocatalysts were prepared, reproducing frequently cited procedures in literature. Based on the comparison, it is found that hydrothermal, sol-gel, and solid-state synthesis provide quite different electrocatalysts, particularly in terms of the particle size and crystal lattice defect structure. Desirably small nanoparticles with a comparatively high number of lattice defects are found for the nanoparticles prepared by hydrothermal synthesis, which also provide the best electrocatalytic performance in terms of Faradaic efficiency for the electroreduction of CO2 to formate. However, despite the considerably smaller surface area, the commercial reference also provides significant electrocatalytic performance, e.g., in terms of the overall produced amount of formate, which suggests a surprisingly high surface area-specific activity for this material that is low on defects. Thus, defects do not appear to be the preferred reaction site for the CO2 electroreduction to formate on SnO2 in this case.
001007826 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007826 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001007826 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007826 7001_ $$0P:(DE-Juel1)180299$$aRutjens, Bastian$$b1$$ufzj
001007826 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b2
001007826 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b3
001007826 7001_ $$0P:(DE-Juel1)180631$$aCamara, Osmane$$b4$$ufzj
001007826 7001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b5$$ufzj
001007826 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6$$ufzj
001007826 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b7
001007826 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8$$eCorresponding author
001007826 770__ $$aCO2 Catalytic Conversion and Utilization
001007826 773__ $$0PERI:(DE-600)2662126-5$$a10.3390/catal13050903$$gVol. 13, no. 5, p. 903 -$$n5$$p903 -$$tCatalysts$$v13$$x2073-4344$$y2023
001007826 8564_ $$uhttps://juser.fz-juelich.de/record/1007826/files/catalysts-13-00903.pdf$$yOpenAccess
001007826 8767_ $$d2023-06-20$$eAPC$$jZahlung erfolgt
001007826 909CO $$ooai:juser.fz-juelich.de:1007826$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b0$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180299$$aForschungszentrum Jülich$$b1$$kFZJ
001007826 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180299$$aRWTH Aachen$$b1$$kRWTH
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b2$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b3$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180631$$aForschungszentrum Jülich$$b4$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b5$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b6$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b7$$kFZJ
001007826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
001007826 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
001007826 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007826 9141_ $$y2023
001007826 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007826 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007826 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007826 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007826 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001007826 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007826 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001007826 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001007826 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007826 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001007826 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:10Z
001007826 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:10Z
001007826 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:10Z
001007826 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATALYSTS : 2022$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001007826 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001007826 920__ $$lyes
001007826 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001007826 9801_ $$aAPC
001007826 9801_ $$aFullTexts
001007826 980__ $$ajournal
001007826 980__ $$aVDB
001007826 980__ $$aUNRESTRICTED
001007826 980__ $$aI:(DE-Juel1)IEK-9-20110218
001007826 980__ $$aAPC
001007826 981__ $$aI:(DE-Juel1)IET-1-20110218