001     1007829
005     20240226075242.0
024 7 _ |a 10.1002/mds.29389
|2 doi
024 7 _ |a 0885-3185
|2 ISSN
024 7 _ |a 1531-8257
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02214
|2 datacite_doi
024 7 _ |a 37071758
|2 pmid
024 7 _ |a WOS:000969916600001
|2 WOS
037 _ _ |a FZJ-2023-02214
082 _ _ |a 610
100 1 _ |a Seger, Aline
|0 P:(DE-Juel1)184882
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Evaluation of a Structured Screening Assessment to Detect Isolated Rapid Eye Movement Sleep Behavior Disorder
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706531744_11227
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ABSTRACT: Background: Isolated rapid eye movement(REM) sleep behavior disorder (iRBD) cohorts have providedinsights into the earliest neurodegenerative processes inα-synucleinopathies. Even though polysomnography (PSG)remains the gold standard for diagnosis, an accuratequestionnaire-based algorithm to identify eligible subjectscould facilitate efficient recruitment in research.Objective: This study aimed to optimize the identificationof subjects with iRBD from the general population.Methods: Between June 2020 and July 2021, we placednewspaper advertisements, including the single-questionscreen for RBD (RBD1Q). Participants’ evaluationsincluded a structured telephone screening consisting ofthe RBD screening questionnaire (RBDSQ) and additionalsleep-related questionnaires. We examined anamnesticinformation predicting PSG-proven iRBD using logisticregressions and receiver operating characteristic curves.Results: Five hundred forty-three participants answeredthe advertisements, and 185 subjects fulfilling inclusionand exclusion criteria were screened. Of these,124 received PSG after expert selection, and 78 (62.9%)were diagnosed with iRBD. Selected items of theRBDSQ, the Pittsburgh Sleep Quality Index, the STOPBangquestionnaire, and age predicted iRBD with highaccuracy in a multiple logistic regression model (areaunder the curve >80%). When comparing the algorithmto the sleep expert decision, 77 instead of 124 polysomnographies(62.1%) would have been carried out,and 63 (80.8%) iRBD patients would have been identified;32 of 46 (69.6%) unnecessary PSG examinationscould have been avoided.Conclusions: Our proposed algorithm displayed highdiagnostic accuracy for PSG-proven iRBD costeffectivelyand may be a convenient tool for research andclinical settings. External validation sets are warranted toprove reliability. © 2023 The Authors. Movement Disorderspublished by Wiley Periodicals LLC on behalf ofInternational Parkinson and Movement Disorder Society.Key Words: general population; Parkinson’s disease;prediction; questionnaire; rapid eye movement sleepbehavior disorder
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ophey, Anja
|0 0000-0001-5858-7762
|b 1
700 1 _ |a Heitzmann, Wiebke
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Doppler, Christopher E. J.
|0 P:(DE-Juel1)161350
|b 3
700 1 _ |a Lindner, Marie-Sophie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brune, Corinna
|0 P:(DE-Juel1)184720
|b 5
700 1 _ |a Kickartz, Johanna
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dafsari, Haidar S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Oertel, Wolfgang H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 9
700 1 _ |a Jost, Stefanie T.
|0 0000-0003-0477-2289
|b 10
700 1 _ |a Sommerauer, Michael
|0 P:(DE-Juel1)179044
|b 11
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/mds.29389
|g p. mds.29389
|0 PERI:(DE-600)2041249-6
|n 6
|p 990-999
|t Movement disorders
|v 38
|y 2023
|x 0885-3185
856 4 _ |u https://juser.fz-juelich.de/record/1007829/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007829
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)179044
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOVEMENT DISORD : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21