Home > Publications database > Evaluation of a Structured Screening Assessment to Detect Isolated Rapid Eye Movement Sleep Behavior Disorder > print |
001 | 1007829 | ||
005 | 20240226075242.0 | ||
024 | 7 | _ | |a 10.1002/mds.29389 |2 doi |
024 | 7 | _ | |a 0885-3185 |2 ISSN |
024 | 7 | _ | |a 1531-8257 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-02214 |2 datacite_doi |
024 | 7 | _ | |a 37071758 |2 pmid |
024 | 7 | _ | |a WOS:000969916600001 |2 WOS |
037 | _ | _ | |a FZJ-2023-02214 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Seger, Aline |0 P:(DE-Juel1)184882 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Evaluation of a Structured Screening Assessment to Detect Isolated Rapid Eye Movement Sleep Behavior Disorder |
260 | _ | _ | |a New York, NY |c 2023 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706531744_11227 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a ABSTRACT: Background: Isolated rapid eye movement(REM) sleep behavior disorder (iRBD) cohorts have providedinsights into the earliest neurodegenerative processes inα-synucleinopathies. Even though polysomnography (PSG)remains the gold standard for diagnosis, an accuratequestionnaire-based algorithm to identify eligible subjectscould facilitate efficient recruitment in research.Objective: This study aimed to optimize the identificationof subjects with iRBD from the general population.Methods: Between June 2020 and July 2021, we placednewspaper advertisements, including the single-questionscreen for RBD (RBD1Q). Participants’ evaluationsincluded a structured telephone screening consisting ofthe RBD screening questionnaire (RBDSQ) and additionalsleep-related questionnaires. We examined anamnesticinformation predicting PSG-proven iRBD using logisticregressions and receiver operating characteristic curves.Results: Five hundred forty-three participants answeredthe advertisements, and 185 subjects fulfilling inclusionand exclusion criteria were screened. Of these,124 received PSG after expert selection, and 78 (62.9%)were diagnosed with iRBD. Selected items of theRBDSQ, the Pittsburgh Sleep Quality Index, the STOPBangquestionnaire, and age predicted iRBD with highaccuracy in a multiple logistic regression model (areaunder the curve >80%). When comparing the algorithmto the sleep expert decision, 77 instead of 124 polysomnographies(62.1%) would have been carried out,and 63 (80.8%) iRBD patients would have been identified;32 of 46 (69.6%) unnecessary PSG examinationscould have been avoided.Conclusions: Our proposed algorithm displayed highdiagnostic accuracy for PSG-proven iRBD costeffectivelyand may be a convenient tool for research andclinical settings. External validation sets are warranted toprove reliability. © 2023 The Authors. Movement Disorderspublished by Wiley Periodicals LLC on behalf ofInternational Parkinson and Movement Disorder Society.Key Words: general population; Parkinson’s disease;prediction; questionnaire; rapid eye movement sleepbehavior disorder |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029) |0 G:(GEPRIS)431549029 |c 431549029 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ophey, Anja |0 0000-0001-5858-7762 |b 1 |
700 | 1 | _ | |a Heitzmann, Wiebke |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Doppler, Christopher E. J. |0 P:(DE-Juel1)161350 |b 3 |
700 | 1 | _ | |a Lindner, Marie-Sophie |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Brune, Corinna |0 P:(DE-Juel1)184720 |b 5 |
700 | 1 | _ | |a Kickartz, Johanna |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Dafsari, Haidar S. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Oertel, Wolfgang H. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Fink, Gereon R. |0 P:(DE-Juel1)131720 |b 9 |
700 | 1 | _ | |a Jost, Stefanie T. |0 0000-0003-0477-2289 |b 10 |
700 | 1 | _ | |a Sommerauer, Michael |0 P:(DE-Juel1)179044 |b 11 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/mds.29389 |g p. mds.29389 |0 PERI:(DE-600)2041249-6 |n 6 |p 990-999 |t Movement disorders |v 38 |y 2023 |x 0885-3185 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007829/files/PDF.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1007829 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)161350 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)179044 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOVEMENT DISORD : 2022 |d 2023-10-24 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOVEMENT DISORD : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-24 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|