000010079 001__ 10079
000010079 005__ 20240708132722.0
000010079 0247_ $$2DOI$$a10.1016/j.memsci.2010.02.065
000010079 0247_ $$2WOS$$aWOS:000279953300013
000010079 037__ $$aPreJuSER-10079
000010079 041__ $$aeng
000010079 082__ $$a570
000010079 084__ $$2WoS$$aEngineering, Chemical
000010079 084__ $$2WoS$$aPolymer Science
000010079 1001_ $$0P:(DE-Juel1)VDB77818$$aBrands, K.$$b0$$uFZJ
000010079 245__ $$aLong-term flue gas exposure effects of silica membranes on porous steel substrate
000010079 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2010
000010079 300__ $$a110 - 114
000010079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010079 3367_ $$2DataCite$$aOutput Types/Journal article
000010079 3367_ $$00$$2EndNote$$aJournal Article
000010079 3367_ $$2BibTeX$$aARTICLE
000010079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010079 3367_ $$2DRIVER$$aarticle
000010079 440_0 $$03536$$aJournal of Membrane Science$$v359$$x0376-7388
000010079 500__ $$aThe project "Nano-structured ceramic and metal supported membranes for gas separation-METPORE" is funded by the Bundeswirtschaftsministerium fur Wirtschaft und Technologie (BMWi), Forderkennzeichen 0327746A. Funding is gratefully acknowledged. The authors also acknowledge financial support through the Innovation Funds given by the Queensland Government (Australia), with further support in Australia from Tarong Power, Stanwell Corporation and the Australian Coal Association via the Centre for Low Emissions Technology (www.clet.net), and in Germany by EnBW, E.ON and RWE. The authors would like to thank D. Sebold for her help in characterizing the membranes, F. Hauler, G. Gottlicher (EnBW) and C. Blessing (EnBW) for experimental support.
000010079 520__ $$aIn this work we investigate the long-term effects of exposing an inorganic membrane for 1100 h in a flue gas stream of a coal power plant. Of particular importance, from an industrial testing perspective, was the effect of fly ash deposition, water vapour and acid gases on the integrity of the membrane made of cobalt silica coated on a substrate of 316L steel, with interlayers of 310S steel, yttria-stabilized zirconia and gamma-alumina. Subsequent to the flue gas testing, the membrane was characterized for single gas permeance, SEM and EDX spectroscopy. Diffusion of nickel and chromium during sintering was observed at the interface of the 316L/310S steels, resulting in a reduced capacity to withstand corrosion in this area. Single gas permeation testing following flue gas exposure revealed a maximum permeation of 1.85 x 10(-8) mol m(-2) s(-1) Pa-1 and 2.13 x 10(-8) mol m(-2) s(-1) Pa-1 for helium and hydrogen respectively, and selectivity of 5.1 and 5.2 for He/N-2 and H-2/CO2 respectively, was achieved at a pressure difference of 2 x 10(5) Pa (2 bar) at 200 degrees C. The permeation behavior of the membrane appeared to be altered as a result of flue gas exposure with the membrane displaying a reduced H2 flux in contrast to an unexposed but otherwise identical membrane which displayed fluxes an order of magnitude higher than the membrane used in the power plant. This change in permeation behavior was thought to be the result of densification of the silica matrix following long-term exposure to flue gas containing water vapour. Micro-fractures in the surface of the cobalt silica gas separation layer were also observed, possibly the result of expansion due to corrosion. However, bulk diffusion was not observed suggesting that the layer was not completely compromised. (C) 2010 Elsevier B.V. All rights reserved.
000010079 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000010079 588__ $$aDataset connected to Web of Science
000010079 65320 $$2Author$$aFlue gas
000010079 65320 $$2Author$$aStainless steel
000010079 65320 $$2Author$$aYttria-stabilized zirconia
000010079 65320 $$2Author$$aSilica
000010079 65320 $$2Author$$aGas separation
000010079 650_7 $$2WoSType$$aJ
000010079 7001_ $$0P:(DE-Juel1)VDB92755$$aUhlmann, D.$$b1$$uFZJ
000010079 7001_ $$0P:(DE-Juel1)VDB92756$$aSmart, S.$$b2$$uFZJ
000010079 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b3$$uFZJ
000010079 7001_ $$0P:(DE-Juel1)VDB76497$$aDiniz da Costa, J.C.$$b4$$uFZJ
000010079 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2010.02.065$$gVol. 359, p. 110 - 114$$p110 - 114$$q359<110 - 114$$tJournal of membrane science$$v359$$x0376-7388$$y2010
000010079 8567_ $$uhttp://dx.doi.org/10.1016/j.memsci.2010.02.065
000010079 909CO $$ooai:juser.fz-juelich.de:10079$$pVDB
000010079 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010079 9141_ $$y2010
000010079 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000010079 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000010079 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000010079 970__ $$aVDB:(DE-Juel1)120247
000010079 980__ $$aVDB
000010079 980__ $$aConvertedRecord
000010079 980__ $$ajournal
000010079 980__ $$aI:(DE-Juel1)IEK-1-20101013
000010079 980__ $$aUNRESTRICTED
000010079 981__ $$aI:(DE-Juel1)IMD-2-20101013
000010079 981__ $$aI:(DE-Juel1)IEK-1-20101013